Performance robustness analysis and control of aerospace vehicles: some feedback from the user point of view

D. Alazard 1

ERO Institut Supérieur de l'Aréonautique et de l'Espace.

International workshop on robust modeling, design and analysis: tools, methods and AeroSpace applications University of Bristol, 18-19 September 2017

Performance robustness analysis and control of aerospace vehicles: some feedback from the user point of view

Objective and outline

Objective: to present some application results on modeling, analysis and control of linear dynamic systems subject to parametric uncertainties or variations, with a focus on aerospace vehicle dynamics.

1 Robustness Analysis of Helicopter Ground Resonance with Parametric Uncertainties in Blade Properties

Preliminary design of control surfaces and laws

Outline

Robustness Analysis of Helicopter Ground Resonance with Parametric Uncertainties in Blade Properties

Robustness Analysis of Helicopter Ground Resonance with Parametric Uncertainties in Blade Properties

see also: L. Sanches, D. Alazard, G. Michon and A. Berlioz, *Robustness Analysis* in Blade Properties, Journal of Guidance, Control, and Dynamics, vol. 36 (n° 1).

Ground resonance: an unstable energy exchange between:

- rotor kinetic energy,
- body kinetic energy,
- potential energy stored in blade hinge stiffnesses and landing gear stiffness.

Illustration (credit Youtube!!)

https://www.youtube.com/watch?v=RihcJROzvfM

Robustness Analysis of Helicopter Ground Resonance with Parametric Uncertainties in Blade Properties

see also: L. Sanches, D. Alazard, G. Michon and A. Berlioz, *Robustness Analysis* in Blade Properties, Journal of Guidance, Control, and Dynamics, vol. 36 (n° 1).

Ground resonance: an unstable energy exchange between:

- rotor kinetic energy,
- body kinetic energy,
- potential energy stored in blade hinge stiffnesses and landing gear stiffness.

Ground resonance dynamics model

LAGRANGE EQUATIONS: $\mathbf{M}(t) \ddot{\mathbf{q}} + \mathbf{G}(t) \dot{\mathbf{q}} + \mathbf{K}(t) \mathbf{q} = \mathbf{0}$ with: $\mathbf{q}(t) = \begin{bmatrix} x(t) & y(t) & \varphi_1(t) & \varphi_2(t) & \varphi_3(t) & \varphi_4(t) \end{bmatrix}^{\mathrm{T}}$. State-space form: $\dot{\mathbf{x}} = \mathbf{A}_p(t)\mathbf{x}$ with $\mathbf{x} = [\mathbf{q}^{\mathrm{T}} \dot{\mathbf{q}}^{\mathrm{T}}]^{\mathrm{T}}$. $\mathbf{M}, \mathbf{G}, \mathbf{K}$ and $\mathbf{A}_{\mathbf{p}}$ are time-periodic: $\mathbf{A}_p(t+T) = \mathbf{A}_p(t)$ with $T = 2\pi/\Omega$.

Performance robustness analysis and control of aerospace vehicles: some feedback from the user point of view

Ground resonance dynamics model

LAGRANGE EQUATIONS: $\mathbf{M}(t) \ddot{\mathbf{q}} + \mathbf{G}(t) \dot{\mathbf{q}} + \mathbf{K}(t) \mathbf{q} = \mathbf{0}$ with: $\mathbf{q}(t) = \begin{bmatrix} x(t) & y(t) & \varphi_1(t) & \varphi_2(t) & \varphi_3(t) & \varphi_4(t) \end{bmatrix}^{\mathrm{T}}$. State-space form: $\dot{\mathbf{x}} = \mathbf{A}_p(t)\mathbf{x}$ with $\mathbf{x} = [\mathbf{q}^{\mathrm{T}} \dot{\mathbf{q}}^{\mathrm{T}}]^{\mathrm{T}}$. \mathbf{M} , \mathbf{G} , \mathbf{K} and \mathbf{A}_p are time-periodic: $\mathbf{A}_p(t+T) = \mathbf{A}_p(t)$ with $T = 2\pi/\Omega$.

Stability by Coleman's approach:

if blade hinge properties are identical: $C_{b_k} = C_b, \ K_{b_k} = K_b, \quad \forall \ k$

Then $\exists \mathbf{P}(t)$ s.t. $\mathbf{P}(t+T) = \mathbf{P}(t)$ and the mapping $\mathbf{q} = \mathbf{P}(t)\mathbf{\tilde{q}}$ transforms the LTP model into a LTI model. Then, stability analysis is obvious.

A simplified model.

Coleman, R., and Feingold, A.: Theory of Self-Excited Mechanical Oscillations of Helicopter Rotors with Hinged Blades, 1957.

Ground resonance dynamics model

LAGRANGE EQUATIONS: $\mathbf{M}(t) \ddot{\mathbf{q}} + \mathbf{G}(t) \dot{\mathbf{q}} + \mathbf{K}(t) \mathbf{q} = \mathbf{0}$ with: $\mathbf{q}(t) = \begin{bmatrix} x(t) & y(t) & \varphi_1(t) & \varphi_2(t) & \varphi_3(t) & \varphi_4(t) \end{bmatrix}^{\mathrm{T}}$. State-space form: $\dot{\mathbf{x}} = \mathbf{A}_p(t)\mathbf{x}$ with $\mathbf{x} = [\mathbf{q}^{\mathrm{T}} \dot{\mathbf{q}}^{\mathrm{T}}]^{\mathrm{T}}$. \mathbf{M} , \mathbf{G} , \mathbf{K} and $\mathbf{A}_{\mathbf{p}}$ are time-periodic: $\mathbf{A}_p(t+T) = \mathbf{A}_p(t)$ with $T = 2\pi/\Omega$.

Stability by Coleman's approach:

if blade hinge properties are identical: $C_{b_k} = C_b, \ K_{b_k} = K_b, \quad \forall \ k$

Then $\exists \mathbf{P}(t)$ s.t. $\mathbf{P}(t+T) = \mathbf{P}(t)$ and the mapping $\mathbf{q} = \mathbf{P}(t)\mathbf{\widetilde{q}}$ transforms the LTP model into a LTI model. Then, stability analysis is obvious.

 \Rightarrow Does not work when hinge properties are not identical (due to aging effect)

\Rightarrow **Floquet v.s.** μ **-analysis** of LTP system.

Floquet analysis

Let us consider variations on each hinge stiffness: $K_{b_k} = K_{b_0}(1+\delta_k)$,

Then: $\dot{\mathbf{x}}(t) = \mathbf{A}_p(t, \boldsymbol{\delta})\mathbf{x}(t)$ with: $\boldsymbol{\delta} = [\delta_1, \ \delta_2, \ \delta_3, \ \delta_4]^{\mathrm{T}}$. (1)

Transition matrix Φ : $\mathbf{x}(t) = \Phi(t, t_0, \boldsymbol{\delta}) \mathbf{x}(t_0)$.

7 / 21

Floquet analysis

Let us consider variations on each hinge stiffness: $K_{b_k} = K_{b_0}(1 + \delta_k)$,

Then: $\dot{\mathbf{x}}(t) = \mathbf{A}_p(t, \boldsymbol{\delta})\mathbf{x}(t)$ with: $\boldsymbol{\delta} = [\delta_1, \delta_2, \delta_3, \delta_4]^{\mathrm{T}}$. (1)

Transition matrix Φ : $\mathbf{x}(t) = \Phi(t, t_0, \boldsymbol{\delta}) \mathbf{x}(t_0)$.

Floquet theory: let $\mathbf{R}(\boldsymbol{\delta}) = \boldsymbol{\Phi}(T, 0, \boldsymbol{\delta})$ be the monodromy matrix,

Then (1) is stable for a given δ iff $\mathbf{R}(\delta)$ is Schur: $\equiv |\lambda_i(\mathbf{R}(\delta))| < 1, \forall i \mid \delta$

Floquet analysis

Let us consider variations on each hinge stiffness: $K_{b_k} = K_{b_0}(1 + \delta_k)$,

Then: $\dot{\mathbf{x}}(t) = \mathbf{A}_p(t, \boldsymbol{\delta})\mathbf{x}(t)$ with: $\boldsymbol{\delta} = [\delta_1, \ \delta_2, \ \delta_3, \ \delta_4]^{\mathrm{T}}$. (1)

Transition matrix Φ : $\mathbf{x}(t) = \Phi(t, t_0, \boldsymbol{\delta}) \mathbf{x}(t_0)$.

Floquet theory: let $\mathbf{R}(\boldsymbol{\delta}) = \boldsymbol{\Phi}(T, 0, \boldsymbol{\delta})$ be the monodromy matrix,

Then (1) is stable for a given δ iff $\mathbf{R}(\delta)$ is Schur: $\equiv |\lambda_i(\mathbf{R}(\delta))| < 1, \quad \forall i \mid \delta$

 $\mathbf{R}(\boldsymbol{\delta})$ can by approximated by $\mathbf{R}_{n_h}(\boldsymbol{\delta})$ using an oversampling period $h = T/n_h$:

$$\mathbf{R}_{n_h}(\boldsymbol{\delta}) = \prod_{i=0}^{n_h-1} \mathrm{e}^{\mathbf{A}_p(ih, \boldsymbol{\delta})h}$$

Floquet analysis

Let us consider variations on each hinge stiffness: $K_{b_k} = K_{b_0}(1 + \delta_k)$,

Then: $\dot{\mathbf{x}}(t) = \mathbf{A}_p(t, \boldsymbol{\delta})\mathbf{x}(t)$ with: $\boldsymbol{\delta} = [\delta_1, \delta_2, \delta_3, \delta_4]^{\mathrm{T}}$. (1)

Transition matrix Φ : $\mathbf{x}(t) = \Phi(t, t_0, \boldsymbol{\delta}) \mathbf{x}(t_0)$.

Floquet theory: let $\mathbf{R}(\boldsymbol{\delta}) = \boldsymbol{\Phi}(T, 0, \boldsymbol{\delta})$ be the monodromy matrix,

Then (1) is stable for a given δ iff $\mathbf{R}(\delta)$ is Schur: $\equiv |\lambda_i(\mathbf{R}(\delta))| < 1, \quad \forall i \mid \delta$

 $\mathbf{R}(\boldsymbol{\delta})$ can by approximated by $\mathbf{R}_{n_h}(\boldsymbol{\delta})$ using an oversampling period $h = T/n_h$:

$$\mathbf{R}_{n_h}(\boldsymbol{\delta}) = \prod_{i=0}^{n_h-1} \mathrm{e}^{\mathbf{A}_p(ih, \boldsymbol{\delta})h_i}$$

Parametric analysis: \Rightarrow a gridding on δ and a too high value on n_h ($n_h = 100$ for instance) is too CPU time-consuming.

LFR of $\mathbf{A}_p(t, \delta)$: $\mathbf{A}_p(t, \delta) = \mathbf{A}(t) + \mathbf{B}(t)\Delta \mathbf{C}(t)$ with $\Delta = \operatorname{diag}(\delta)$. Let $\mathcal{M}(\mathbf{s}, t) = \mathbf{C}(t) (\mathbf{s}\mathbf{1} - \mathbf{A}(t))^{-1} \mathbf{B}(t)$, then:

 $(\mathcal{M}(\mathbf{s},t),\mathbf{\Delta})$ is the LFR of the uncertain system.

Kim, J. et Al., Robustness Analysis of Linear Periodic Time-Varying Systems Subject to Structured Uncertainty, SCL,2006

LFR of $\mathbf{A}_p(t, \boldsymbol{\delta})$: $\mathbf{A}_p(t, \boldsymbol{\delta}) = \mathbf{A}(t) + \mathbf{B}(t) \Delta \mathbf{C}(t)$ with $\Delta = \operatorname{diag}(\boldsymbol{\delta})$. Let $\mathcal{M}(\mathbf{s}, t) = \mathbf{C}(t) (\mathbf{s}\mathbf{1} - \mathbf{A}(t))^{-1} \mathbf{B}(t)$, then:

 $(\mathcal{M}(\mathbf{s},t),\boldsymbol{\Delta})$ is the LFR of the uncertain system.

Lifting procedure on $(\mathcal{M}(s,t), \Delta)$: given n_h $(h = T/n_h)$:

 the n_h LTI models M(s, ih) (i = 0, 1, ..., n_h − 1) are discretized (zoh,foh,tustin) ⇒ M_d(z, i) (n_h models; each is n_h-periodic),

Kim, J. et Al., Robustness Analysis of Linear Periodic Time-Varying Systems Subject to Structured Uncertainty, SCL,2006

LFR of $\mathbf{A}_p(t, \boldsymbol{\delta})$: $\mathbf{A}_p(t, \boldsymbol{\delta}) = \mathbf{A}(t) + \mathbf{B}(t) \Delta \mathbf{C}(t)$ with $\boldsymbol{\Delta} = \operatorname{diag}(\boldsymbol{\delta})$. Let $\mathcal{M}(\mathbf{s}, t) = \mathbf{C}(t) (\mathbf{s}\mathbf{1} - \mathbf{A}(t))^{-1} \mathbf{B}(t)$, then:

 $(\mathcal{M}(\mathbf{s},t),\boldsymbol{\Delta})$ is the LFR of the uncertain system.

Lifting procedure on $(\mathcal{M}(s,t), \Delta)$: given n_h $(h = T/n_h)$:

- the n_h LTI models $\mathcal{M}(s, ih)$ $(i = 0, 1, ..., n_h 1)$ are discretized (zoh,foh,tustin) $\Rightarrow \mathcal{M}_d(z, i)$ $(n_h$ models; each is n_h -periodic),
- the n_h discrete-time LTI models are integrated over one period $n_h \Rightarrow (\underline{\mathcal{M}}_d(\mathbf{z}), \underline{\Delta})$ with $\underline{\Delta} = \text{diag} [\Delta, \Delta, \dots, \Delta]$,

LFR of $\mathbf{A}_p(t, \boldsymbol{\delta})$: $\mathbf{A}_p(t, \boldsymbol{\delta}) = \mathbf{A}(t) + \mathbf{B}(t) \Delta \mathbf{C}(t)$ with $\boldsymbol{\Delta} = \operatorname{diag}(\boldsymbol{\delta})$. Let $\mathcal{M}(\mathbf{s}, t) = \mathbf{C}(t) (\mathbf{s}\mathbf{1} - \mathbf{A}(t))^{-1} \mathbf{B}(t)$, then:

 $(\mathcal{M}(\mathbf{s},t),\boldsymbol{\Delta})$ is the LFR of the uncertain system.

Lifting procedure on $(\mathcal{M}(s,t), \Delta)$: given n_h $(h = T/n_h)$:

- the n_h LTI models $\mathcal{M}(s, ih)$ $(i = 0, 1, ..., n_h 1)$ are discretized (zoh,foh,tustin) $\Rightarrow \mathcal{M}_d(z, i)$ $(n_h$ models; each is n_h -periodic),
- the n_h discrete-time LTI models are integrated over one period n_h $\Rightarrow (\underline{\mathcal{M}}_d(\mathbf{z}), \underline{\Delta})$ with $\underline{\Delta} = \text{diag} [\Delta, \Delta, \dots, \Delta]$,
- re-ordering the inputs/ouputs: $\Rightarrow (\underline{\widetilde{\mathcal{M}}}_d(\mathbf{z}), \underline{\widetilde{\Delta}})$: the discrete-time lifted model with $\underline{\widetilde{\Delta}} = \operatorname{diag} [\delta_1 \mathbf{1}_{n_h}, \dots \delta_p \mathbf{1}_{n_h}]$,

LFR of $\mathbf{A}_p(t, \boldsymbol{\delta})$: $\mathbf{A}_p(t, \boldsymbol{\delta}) = \mathbf{A}(t) + \mathbf{B}(t) \Delta \mathbf{C}(t)$ with $\boldsymbol{\Delta} = \operatorname{diag}(\boldsymbol{\delta})$. Let $\mathcal{M}(\mathbf{s}, t) = \mathbf{C}(t) (\mathbf{s}\mathbf{1} - \mathbf{A}(t))^{-1} \mathbf{B}(t)$, then:

 $(\mathcal{M}(\mathbf{s},t),\boldsymbol{\Delta})$ is the LFR of the uncertain system.

Lifting procedure on $(\mathcal{M}(s,t), \Delta)$: given n_h $(h = T/n_h)$:

- the n_h LTI models $\mathcal{M}(s, ih)$ $(i = 0, 1, ..., n_h 1)$ are discretized (zoh,foh,tustin) $\Rightarrow \mathcal{M}_d(z, i)$ $(n_h$ models; each is n_h -periodic),
- the n_h discrete-time LTI models are integrated over one period n_h $\Rightarrow (\underline{\mathcal{M}}_d(\mathbf{z}), \underline{\Delta})$ with $\underline{\Delta} = \text{diag} [\Delta, \Delta, \dots, \Delta]$,
- re-ordering the inputs/ouputs: $\Rightarrow (\underline{\widetilde{\mathcal{M}}}_d(z), \underline{\widetilde{\Delta}})$: the discrete-time lifted model with $\underline{\widetilde{\Delta}} = \operatorname{diag} [\delta_1 \mathbf{1}_{n_h}, \dots \delta_p \mathbf{1}_{n_h}]$,
- inverse Tustin transformation is applied on $(\underline{\widetilde{M}}_d(\mathbf{z}, \underline{\widetilde{\Delta}})$ to go back to continuous-time:

 $\Rightarrow (\widetilde{\underline{\mathcal{M}}}_{c}(\mathbf{s}), \widetilde{\underline{\Delta}})$ is the **lifted** model.

Up to the re-ordering on the augmented uncertainty block $\underline{\Delta}$, the lifting procedure can be seen as the numerical integration of n_h -periodically switched LTI systems:

See also: ltp2lti.m in https://personnel.isae-supaero.fr/daniel-alazard/matlab-packages/.

10 / 21

Validation of the lifting procedure and discretization method comparison

Considering: $\delta = [0, 0, 0, \delta_4], \delta_4 \in [-1:0.1:1]$:

- the discrete-time lifted model $\widetilde{\mathcal{M}}_d(\mathbf{z})$ is computed for three different values of n_h (10, 30 and 100) and the three discretization methods (zoh, foh, Tustin),
- the LFT $\underline{\widetilde{\mathcal{M}}}_d(z) \underline{\widetilde{\Delta}}$ is resolved and compared with the Floquet monodromy matrix $\mathbf{R}_{100}([0,0,0,\delta_4])$

10 / 21

Validation of the lifting procedure and discretization method comparison

Considering: $\delta = [0, 0, 0, \delta_4], \delta_4 \in [-1:0.1:1]$:

- the discrete-time lifted model $\widetilde{\mathcal{M}}_d(\mathbf{z})$ is computed for three different values of n_h (10, 30 and 100) and the three discretization methods (zoh, foh, Tustin),
- the LFT $\underline{\widetilde{\mathcal{M}}}_d(z) \underline{\widetilde{\Delta}}$ is resolved and compared with the Floquet monodromy matrix $\mathbf{R}_{100}([0,0,0,\delta_4])$

The comparison index is the highest eigenvalue (or characteristic multiplier) magnitude $\overline{|\lambda_l|}(\delta_4)$ and $\overline{|\lambda_{\mathbf{R}_{100}}|}(\delta_4)$ for the lifted model and the monodromy matrix, respectively.

Validation of the lifting procedure - ZOH methode

Evolution of the magnitude of the highest characteristic multiplier with respect to δ_4 : $\overline{|\lambda_l|}(\delta_4)$, for different values of n_h using zoh method in the lifting procedure, and $\overline{|\lambda_{\mathbf{R}_{100}}|}(\delta_4)$.

Performance robustness analysis and control of aerospace vehicles: some feedback from the user point of view

Validation of the lifting procedure - Tustin method

Evolution of the magnitude of the highest characteristic multiplier with respect to δ_4 : $\overline{|\lambda_l|}(\delta_4)$, for different values of n_h using tustin method in the lifting procedure, and $\overline{|\lambda_{\mathbf{R}_{100}}|}(\delta_4)$.

Validation of the lifting procedure - FOH method

Evolution of the magnitude of the highest characteristic multiplier with respect to δ_4 : $\overline{|\lambda_l|}(\delta_4)$, for different values of n_h using foh method in the lifting procedure, and $\overline{|\lambda_{\mathbf{R}_{100}}|}(\delta_4)$. \Rightarrow OK!! with $n_h = 30$.

Performance robustness analysis and control of aerospace vehicles: some feedback from the user point of view

21

μ -analysis results - Conclusions

 μ -analysis is performed on the 12-th order $(\underline{\widetilde{M}}_c(s), \underline{\widetilde{\Delta}}_{120\times 120})$ problem using the SMART toolbox.

 $\delta_{worst} = 0.085 [1, 1, 1, 1]$: worst-case configuration corresponds to a rotor with identical hinge stiffnesses !!

μ -analysis results - Conclusions

 μ -analysis is performed on the 12-th order $(\underline{\widetilde{\mathcal{M}}}_c(s), \underline{\widetilde{\Delta}}_{120\times 120})$ problem using the SMART toolbox.

Performance robustness analysis and control of aerospace vehicles: some feedback from the user point of view

2 Preliminary design of control surfaces and laws

Preliminary design of control surfaces and laws

- Flying wing as a study case (strongly unstable and 3-axis coupled),
- Minimization of control surfaces size (η) under constraints of 3-axis control performance and max deflection (RMS) for given inputs (pilot orders and/or wind disturbance).

See also: Y. Denieul et Al., Multi-Control Surfaces Optimization for Blended Wing-Body under Handling Qualities Constraints, Journal of Aircraft, 2017.

17 / 21

Preliminary design of control surfaces and laws

Computation of aerodynamic models for different control surfaces size η :

- APRICOT Toolbox used (Roos, Hardier, et Biannic 2014)
- Least-square extrapolation
- Final LFR size: order 20 with 5 order polynomial

Preliminary design of control surfaces and laws

Computation of aerodynamic models for different control surfaces size $\eta,$ LFR validation:

Elevon size η and 3 axis control law co-design

Structured control laws: $[C^*Law, Y^*Law] = fct(\mathbf{K})$. Then for a given γ :

Co-design for handling qualities: Solved using SYSTUNE routine from Matlab RCT (Apkarian et Noll 2015)

$$(\widehat{\eta}, \widehat{\mathbf{K}}, \widehat{K}_{alloc}) = \arg \min_{\eta, \mathbf{K}, K_{alloc}} \eta \ / \ \|T_{(Nz_c, \phi_c, \beta_c) \to (z_1, z_2, z_3)}\|_{\infty} < \gamma \,.$$

Performance robustness analysis and control of aerospace vehicles: some feedback from the user point of view

Co-design with all flying qu	alities and constrain
------------------------------	-----------------------

	Function / Variable	Description	Quantity
minimize	η	Outer elevons total span	
with respect to	K	Control law gains	16
	Kalloc	Control allocation matrix	11
	η	Outer elevons total span	1
subject to	$\left\ \frac{1}{\Delta \delta m max}T_{Nz_c \to u}\Delta \alpha \frac{V_e}{2}z_{\alpha}\right\ _{\infty} \leq 1$	Maximum deflection in response	5
	Δm_i M_i g $=$	to longitudinal order.	
$\ \frac{1}{\delta m_i^{max}}T_{Nz_c}$	$\left\ \frac{1}{\alpha} \frac{1}{max} T_{Nz_{\alpha} \rightarrow \dot{u}} \Delta \alpha \frac{V_{e}}{z_{\alpha}} z_{\alpha} \right\ _{\infty} < 1$	Maximum deflection rate in re-	5
	$\delta m_i^{i,i,a,b} \rightarrow \delta m_i^{i,i$	sponse to longitudinal order.	
	$\left\ \frac{2}{\Delta s_{m}max}T_{e_{m}\rightarrow u}\right\ _{\infty} \leq 1$	Maximum deflection in response	5
$\Delta \delta m_i^{n,au} = \delta_w^{n,au}$	$\Delta \delta m_i$	to longitudinal turbulence	
	$\left\ \frac{2}{c} T_{e_w \to \dot{u}}\right\ _{\infty} \leq 1$	Maximum deflection rate in re-	5
	om _i u	sponse to longitudinal turbu-	
		lence	
	$\left\ \frac{1}{\Delta \delta m^{max}} T_{\phi_c \to u} \phi^{max} \right\ _{\infty} \leq 1$	Maximum deflection in response	5
	to bank order.		
	$\left\ \frac{1}{c} \frac{1}{max} T_{\phi_c \rightarrow \dot{\mu}} \phi^{max} \right\ _{\infty} \leq 1$	Maximum deflection rate in re-	5
om _i a transferra	sponse to bank order.		
	$\ T_{(Nz_c,\phi_c,\beta_c)\to(z_1,z_2,z_2)}\ _{\infty} \leq \gamma$	Optimal closed-loop perfor-	1
((0,70,70,70,17,2,73,	mance.	
	$\forall p, p \text{ pole of } P(s)$:	Closed-loop poles location.	1
	$Re(p) \leq -MinDecay$		
	$Re(p) \leq -MinDamping. p $		
	K internally stabilizes $P(\eta)$		

 $\widehat{\eta}=0.3885$.

Performance robustness analysis and control of aerospace vehicles: some feedback from the user point of view

Thank you !

Questions ?

Performance robustness analysis and control of aerospace vehicles: some feedback from the user point of view