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Objective and outline

Objective: to present some application results on modeling, analysis and
control of linear dynamic systems subject to parametric uncertainties or
variations, with a focus on aerospace vehicle dynamics.

1 Robustness Analysis of Helicopter Ground Resonance with Parametric
Uncertainties in Blade Properties

2 Preliminary design of control surfaces and laws
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Outline

1 Robustness Analysis of Helicopter Ground Resonance with Parametric
Uncertainties in Blade Properties

2 Preliminary design of control surfaces and laws
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Robustness Analysis of Helicopter Ground Resonance with

Parametric Uncertainties in Blade Properties

see also: L. Sanches, D. Alazard, G. Michon and A. Berlioz, Robustness Analysis ....

in Blade Properties, Journal of Guidance, Control, and Dynamics, vol. 36 (n◦ 1).

Ground resonance: an unstable
energy exchange between:

rotor kinetic energy,

body kinetic energy,

potential energy stored in
blade hinge stiffnesses and
landing gear stiffness.

Illustration (credit Youtube!!)
see:

https://www.youtube.com/watch?v=RihcJR0zvfM
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Robustness Analysis of Helicopter Ground Resonance with

Parametric Uncertainties in Blade Properties

see also: L. Sanches, D. Alazard, G. Michon and A. Berlioz, Robustness Analysis ....

in Blade Properties, Journal of Guidance, Control, and Dynamics, vol. 36 (n◦ 1).

Ground resonance: an unstable
energy exchange between:

rotor kinetic energy,

body kinetic energy,

potential energy stored in
blade hinge stiffnesses and
landing gear stiffness.

A simplified model.
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Ground resonance dynamics model

Lagrange equations: M(t) q̈ + G(t) q̇ + K(t) q = 0
with: q (t) = [ x(t) y(t) ϕ1(t) ϕ2(t) ϕ3(t) ϕ4(t) ]T.
State-space form: ẋ = Ap(t)x with x = [qT q̇T]T.
M, G, K and Ap are time-periodic: Ap(t+T ) = Ap(t) with T = 2π/Ω.

Stability by Coleman’s approach:
if blade hinge properties are identical:
Cbk = Cb, Kbk = Kb, ∀ k

Then ∃ P(t) s.t. P(t+ T ) = P(t) and the
mapping q = P(t)q̃ transforms the LTP
model into a LTI model.
Then, stability analysis is obvious.

⇒ Does not work when hinge properties are
not identical (due to aging effect)

⇒ Floquet v.s. µ-analysis of LTP system.

ψk

ϕk

x

y

Kfy, Cfy

Kfx, Cfx

Kbk, Cbk

A simplified model.

Coleman, R., and Feingold, A.: Theory of Self-Excited Mechanical Oscillations of Helicopter Rotors with Hinged
Blades, 1957.
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Floquet analysis

Let us consider variations on each hinge stiffness: Kbk = Kb0(1 + δk),

Then: ẋ(t) = Ap(t, δ)x(t) with: δ = [δ1, δ2, δ3, δ4]T . (1)

Transition matrix Φ: x(t) = Φ(t, t0, δ)x(t0) .

Floquet theory: let R(δ) = Φ(T, 0, δ) be the monodromy matrix,

Then (1) is stable for a given δ iff R(δ) is Schur: ≡ |λi(R(δ))| < 1, ∀ i

R(δ) can by approximated by Rnh(δ) using an oversampling period
h = T/nh:

Rnh(δ) =

nh−1∏

i=0

eAp(ih,δ)h .

Parametric analysis: ⇒ a gridding on δ and a too high value on nh
(nh = 100 for instance) is too CPU time-consuming.
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Lifting procedure for µ-analysis

LFR of Ap(t, δ): Ap(t, δ) = A(t) + B(t)∆C(t) with ∆ = diag(δ).

Let M(s, t) = C(t) (s1−A(t))
−1

B(t), then:

(M(s, t),∆) is the LFR of the uncertain system.

Lifting procedure on (M(s, t),∆): given nh (h = T/nh):

the nh LTI models M(s, ih) (i = 0, 1, . . . , nh − 1) are discretized
(zoh,foh,tustin) ⇒ Md(z, i) (nh models; each is nh-periodic),

the nh discrete-time LTI models are integrated over one period nh
⇒ (Md(z),∆) with ∆ = diag [∆, ∆, . . . , ∆],

re-ordering the inputs/ouputs: ⇒ (M̃d(z), ∆̃): the discrete-time

lifted model with ∆̃ = diag [δ11nh , . . . δp1nh ],

inverse Tustin transformation is applied on (M̃d(z, ∆̃) to go back
to continuous-time:

⇒ (M̃c(s), ∆̃) is the lifted model.

Kim, J. et Al., Robustness Analysis of Linear Periodic Time-Varying Systems Subject to Structured Uncertainty,
SCL,2006
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Lifting procedure for µ-analysis

Up to the re-ordering on the augmented uncertainty block ∆, the lifting
procedure can be seen as the numerical integration of nh-periodically
switched LTI systems:

...

switch

...

C(0)

A(0)

A(h)

A((nh − 1)h)

...

∆

∆

. . .

∆

ẋ(t) x(t)∫
. dt

B(0)

C((nh − 1)h)B((nh − 1)h)

B(h) C(h)

...

tr = remainder(t,T)

t

tr

+

+

tr ∈ [(nh − 1)h, T [

tr ∈ [0, h[

tr ∈ [h, 2h[
...

+

+

+

+

∆

M(s)

See also: ltp2lti.m in https://personnel.isae-supaero.fr/daniel-alazard/matlab-packages/.
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Validation of the lifting procedure and discretization method

comparison

Considering: δ = [0, 0, 0, δ4], δ4 ∈ [−1 : 0.1 : 1]:

the discrete-time lifted model M̃d(z) is computed for three different
values of nh (10, 30 and 100) and the three discretization methods
(zoh, foh, Tustin),

the LFT M̃d(z)− ∆̃ is resolved and compared with the Floquet
monodromy matrix R100([0, 0, 0, δ4])

The comparison index is the highest eigenvalue (or characteristic
multiplier) magnitude |λl|(δ4) and |λR100

|(δ4) for the lifted model and
the monodromy matrix, respectively.
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Validation of the lifting procedure - ZOH methode
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Evolution of the magnitude of the highest characteristic multiplier with
respect to δ4: |λl|(δ4), for different values of nh using zoh method in the

lifting procedure, and |λR100 |(δ4).
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Validation of the lifting procedure - Tustin method
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respect to δ4: |λl|(δ4), for different values of nh using tustin method in

the lifting procedure, and |λR100 |(δ4).
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Validation of the lifting procedure - FOH method
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Evolution of the magnitude of the highest characteristic multiplier with
respect to δ4: |λl|(δ4), for different values of nh using foh method in the

lifting procedure, and |λR100 |(δ4).⇒ OK!! with nh = 30.
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µ-analysis results - Conclusions

µ-analysis is performed on the 12-th order (M̃c(s), ∆̃120×120) problem
using the SMART toolbox.
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δworst = 0.085 [1, 1, 1, 1]:
worst-case configuration
corresponds to a rotor with
identical hinge stiffnesses !!

µ-analysis quite efficient and
accurate but the Coleman
method is still relevant!!
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Outline

1 Robustness Analysis of Helicopter Ground Resonance with Parametric
Uncertainties in Blade Properties

2 Preliminary design of control surfaces and laws
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Preliminary design of control surfaces and laws

• Flying wing as a study case (strongly unstable and 3-axis coupled),
• Minimization of control surfaces size (η) under constraints of 3-axis
control performance and max deflection (RMS) for given inputs (pilot
orders and/or wind disturbance).

See also: Y. Denieul et Al., Multi-Control Surfaces Optimization for Blended Wing-Body under Handling Qualities
Constraints, Journal of Aircraft, 2017.
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Preliminary design of control surfaces and laws

Computation of aerodynamic models for different control surfaces size η:

APRICOT

Toolbox

LFR Approximation

η = 0:1 : 1

mass Mach H

Calibrated Aerodynamic

Models

AVL

Aerodynamic

Computation
η = 0:1 : 1

mass Mach H

Aircraft with varying

elevons span

Geometrical Model

Reference Aircraft

Aerodynamic Model

LFR function of

elevons span

mass Mach H

η

APRICOT Toolbox used (Roos, Hardier, et Biannic 2014)

Least-square extrapolation

Final LFR size: order 20 with 5 order polynomial
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Preliminary design of control surfaces and laws

Computation of aerodynamic models for different control surfaces size η,
LFR validation:

Cmδmi approximation of elevon
pitch gradient for varying η.

Clδmi approximation of elevon roll
gradient for varying η.

18 / 21

Performance robustness analysis and control of aerospace vehicles: some feedback from the user point of view



Robustness Analysis of Helicopter Ground Resonance with Parametric Uncertainties in Blade Properties Preliminary design of control surfaces and laws

Elevon size η and 3 axis control law co-design

LFR Aircraft
RepresentationKalloc

!2
act

s2+2ξact!acts+!2
act

Actuators model

C∗ Law

Y ∗ Law

Nzc

φc

βc

δmequi

δlequi
δnequi

δmi i = 1::10

Nz

q

β

p

r

φ

u

δn

ew wz
σz

q

2Lz

πVe

1+

p

3Lz

Ve
s

(1+Lz

Ve
s)

2

Turbulence model

Delay

η

!2

0

s2+2ξ0!0s+!2

0

Reference pitch dynamics

1
(1+s=τrp)(1+s=τsp)

Reference roll dynamics

!2

dr

s2+2ξdr!drs+!2

dr

Reference yaw dynamics

z1

z2

z3

+

+

+

−

−

−

Nref
z

φref

βref

Structured control laws: [C?Law, Y ?Law] = fct(K). Then for a given γ:

Co-design for handling qualities:
Solved using SYSTUNE routine from Matlab RCT (Apkarian et Noll 2015)

(η̂, K̂, K̂alloc) = arg min
η,K,Kalloc

η / ‖T(Nzc,φc,βc)→(z1,z2,z3)‖∞ < γ .
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Co-design with all flying qualities and constraint
Function / Variable Description Quantity

minimize η Outer elevons total span
with respect to K Control law gains 16

Kalloc Control allocation matrix 11
η Outer elevons total span 1

subject to ‖ 1
∆δmmax

i
TNzc→u∆αVe

g
zα‖∞ ≤ 1 Maximum deflection in response

to longitudinal order.
5

‖ 1
˙δmmaxi

TNzc→u̇∆αVe
g
zα‖∞ ≤ 1 Maximum deflection rate in re-

sponse to longitudinal order.
5

‖ 2
∆δmmax

i
Tew→u‖∞ ≤ 1 Maximum deflection in response

to longitudinal turbulence
5

‖ 2
˙δmmaxi

Tew→u̇‖∞ ≤ 1 Maximum deflection rate in re-
sponse to longitudinal turbu-
lence

5

‖ 1
∆δmmax

i
Tφc→uφ

max‖∞ ≤ 1 Maximum deflection in response
to bank order.

5

‖ 1
˙δmmaxi

Tφc→u̇φ
max‖∞ ≤ 1 Maximum deflection rate in re-

sponse to bank order.
5

‖T(Nzc,φc,βc)→(z1,z2,z3)‖∞ ≤ γ Optimal closed-loop perfor-
mance.

1

∀p, p pole of P (s) : Closed-loop poles location. 1
Re(p) ≤ −MinDecay
Re(p) ≤ −MinDamping.|p|
K internally stabilizes P (η)

η̂ = 0.3885 .
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Thank you !

Questions ?
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