LPVTools: A Toolbox for Modeling, Analysis, and Synthesis of Parameter Varying Control

Arnar Hjartarson, Andrew Packard, and Peter Seiler

International Workshop in Robust Modeling, Design & Analysis
September 18, 2017
Gary J. Balas (Sept. 27, 1960 – Nov. 12, 2014)
Spreading the Word

MUSYN Robust Control Theory Short Course (Start: 1989)
Software Development

μ-Tools merged with the Matlab Robust Control Toolbox (2004)
Awards

Honors and Awards

2012 Honorary Member, Hungarian Academy of Engineering
2012 Plenary Speaker, 7th IFAC Symposium on Robust Control Design, Aalborg, Denmark
2010 Prize for the Development of the Hungarian Aeronautical Science, Hungarian Scientific Association for Transport
2010 Plenary Speaker, 2nd Workshop on Clearance of Flight Control Laws, Stockholm, Sweden
2009 Plenary Speaker, 49th Israel Annual Conference on Aerospace Sciences, Tel Aviv and Haifa, Israel
2007 Distinguished McKnight University Professor, University of Minnesota
2006 O. Hugo Schuck Best Paper Award, American Automatic Control Council (with T. Keviczky)
2005 Control Systems Technology Award, IEEE Control System Society (with Prof. A.K. Packard)
2005-2006 Fellow, Committee on Institutional Cooperation Academic Leadership Program
2005 Semi-Plenary Speaker, 16th International Federation of Automatic Control (IFAC) World Congress, Prague, Czech Republic (with Prof. J. Bokor)
2004 Fellow, IEEE
2004 Plenary Speaker, Technical University of Delft Center for Systems and Control, “Challenges for the 21st Century”
2003 Institute of Technology George Taylor Distinguished Research Award, University of Minnesota
2003 Semi-Plenary Speaker, European Control Conference, Cambridge, England
2002 Associate Fellow, AIAA
2002-04 Senior Member, IEEE
2002 Session Plenary Speaker, International Council of Aeronautical Sciences Conference, Toronto
1999 Outstanding Young Investigator Award, ASME Dynamic Systems and Control
1993-1995 McKnight-Land Grant Professorship, University of Minnesota
1989-90, 2002 American Control Conference Best Paper Presentation in Session
1986-89 NASA Graduate Student Fellowship
1986 Donald Wills Douglas Fellowship in Aeronautics
1982-84 Hughes Aircraft Graduate Student Fellowship
1980-82 Hughes Aircraft Undergraduate Student Fellowship

Schuck Award w/ T. Keviczky (’05 ACC)
Head of Aerospace Eng. & Mechanics (7/06-1/14)
Students & Visitors

and many others...
Collaborations
Enjoying Conferences

ROCOND 2012

Robust Control Workshop 2005
Delft Center for Systems and Control
Biking...All year round in Minnesota!
LPVTools: Matlab Toolbox for LPV Systems

- Developed by MuSyn: Balas, Packard, Seiler, Hjartarson
 - Funded by NASA SBIR contract #NNX12CA14C
- Goal: Unified framework for grid/LFT based LPV
 - Modeling
 - Synthesis
 - Analysis
 - Simulation
- MATLAB/Simulink integration
 - Compatible with Control Toolbox, Robust Control Toolbox, Simulink.
 - Uses MATLAB object-oriented class programming
(A Subset of) LPV Software Tools

- **LFT**
 - SMAC, LFR, LFRT-SLK, and Robust Feedforward Design Toolboxes (ONERA: Magni, Biannic, Roos, Ferreres, Demourant,...)
 - Enhanced LFR-toolbox (DLR: Hecker, Varga, Pfifer,...)
 - LPV Robust Control Toolbox (Milan: De Vito, Lovera; NGC Aerospace: Kron, de Lafontaine)
 - LFR-RAI (Siena: Garulli, Masi, Paoletti, Türkoğlu)
 - LPV Analysis & Synthesis (Stuttgart: Scherer, Veenman, Köse, Köroğlu,...)

- **Grid-based**
 - LMI Control Toolbox, HINFSTRUCT, Simulink LPV Blocks (Matlab)

- **Polytopic**
 - TP Toolbox (Sztaki: Baranyi, Takarics,...)
Classes of LPV Models

LPV systems depend on a time varying parameter $\rho(t)$

$$
\begin{bmatrix}
\dot{x}(t) \\
y(t)
\end{bmatrix} =
\begin{bmatrix}
A(\rho(t)) & B(\rho(t)) \\
C(\rho(t)) & D(\rho(t))
\end{bmatrix}
\begin{bmatrix}
x(t) \\
u(t)
\end{bmatrix}
$$

Three main classes of LPV systems

- **Grid-based** (Jacobian Linearization) Models
 - $A(\rho), B(\rho), C(\rho),$ and $D(\rho)$ are arbitrary functions of ρ.
 - State matrices defined on a grid of parameter values ρ_k

- **Linear Fractional Transformation** (LFT) Models
 - $A(\rho), B(\rho), C(\rho),$ and $D(\rho)$ are rational functions of ρ.

- **Polytopic** Models
 - $A(\rho), B(\rho), C(\rho),$ and $D(\rho)$ are polytopic functions of ρ.
 - Affine models as a special case
Modeling in LPVTools
Data Structures for LPV/LFT Systems

<table>
<thead>
<tr>
<th>Object Type</th>
<th>Block</th>
<th>Matrix</th>
<th>System</th>
<th>Frequency Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal</td>
<td></td>
<td>double</td>
<td>ss</td>
<td>frd</td>
</tr>
<tr>
<td>Uncertain</td>
<td></td>
<td>umat</td>
<td>uss</td>
<td>ufrd</td>
</tr>
<tr>
<td>Nominal</td>
<td></td>
<td>pmat</td>
<td>pss</td>
<td>pfrd</td>
</tr>
<tr>
<td>Gridded LPV</td>
<td></td>
<td>upmat</td>
<td>upss</td>
<td>upfrd</td>
</tr>
<tr>
<td>Uncertain</td>
<td></td>
<td>pmatlft</td>
<td>psslft</td>
<td></td>
</tr>
<tr>
<td>Nominal</td>
<td></td>
<td>pmatlft</td>
<td>psslft</td>
<td></td>
</tr>
</tbody>
</table>
Data Structures for LPV/LFT Systems

<table>
<thead>
<tr>
<th>Object Type</th>
<th>Block</th>
<th>Matrix</th>
<th>System</th>
<th>Frequency Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal</td>
<td></td>
<td>$y \rightarrow M \rightarrow u$</td>
<td>double</td>
<td>ss</td>
</tr>
<tr>
<td>Uncertain</td>
<td></td>
<td>$y \rightarrow M \rightarrow u$</td>
<td>umat</td>
<td>uss</td>
</tr>
<tr>
<td>Nominal Gridded LPV</td>
<td></td>
<td>$y \rightarrow M(\rho) \rightarrow u$</td>
<td>pmat</td>
<td>pss</td>
</tr>
<tr>
<td>Uncertain Gridded LPV</td>
<td></td>
<td>$y \rightarrow M(\rho) \rightarrow u$</td>
<td>upmat</td>
<td>upss</td>
</tr>
<tr>
<td>Nominal LFT LPV</td>
<td></td>
<td>$y \rightarrow M \rightarrow u$</td>
<td>pmatlft</td>
<td>psslft</td>
</tr>
<tr>
<td>Uncertain LFT LPV</td>
<td></td>
<td>$y \rightarrow M \rightarrow u$</td>
<td>pmatlft</td>
<td>psslft</td>
</tr>
</tbody>
</table>
Grid-Based LPV Systems

Matrices or systems defined on a grid of parameter values:

- Arbitrary parameter dependence
- $A(\rho_k), B(\rho_k), C(\rho_k),$ and $D(\rho_k)$ defined at each ρ_k.
- Analogous to gain-scheduled control framework
PGRID: Real parameter defined on a grid of points

% Create a PGRID object
>> x = pgrid('x', -3:3)
Gridded parameter "x", 7 points in [-3,3], rate bounds [-Inf,Inf].
>> class(x)
ans = pgrid

% Change Name
>> x.Name = 'z'
Gridded parameter "z", 7 points in [-3,3], rate bounds [-Inf,Inf].

% PGRIDs can be used to represent time-varying parameters
% with specified rate bounds
>> y = pgrid('y', linspace(0,pi,10), [-3 3])
Gridded parameter "y", 10 points in [0,3.14], rate bounds [-3,3].

% Change RateBounds
>> y.RateBounds = [-1 1]
Gridded parameter "y", 10 points in [0,3.14], rate bounds [-1,1].
% Use PGRIDs to generate a PSS

```matlab
>> a = pgrid('a', linspace(-3,-2,6) );
>> b = pgrid('b', linspace(2,3,5) );
>> sys = ss(a,b,1,0)
```

PSS with 1 States, 1 Outputs, 1 Inputs, Continuous System.
The PSS consists of the following blocks:

- a: Gridded real, 6 points in \([-3,-2]\), rate bounds \([-\infty, \infty]\).
- b: Gridded real, 5 points in \([2,3]\), rate bounds \([-\infty, \infty]\).
“Pointwise” control calculations

% Unit step response at each point
% in the parameter grid
>> wn = pgrid('wn',0.5:0.25:1.5)
>> zeta = pgrid('zeta',0.7:0.1:1);
>> G = ss([0 1; -wn^2 -2*zeta*wn],[0;1],[1 0],0);
>> step(G,20)

% Compute Hinf norm at each point
>> n = norm(G,inf)
PMAT with 1 rows and 1 columns.
The PMAT consists of the following blocks:
 wn: Gridded real, 5 points in [0.5,1.5], rate bounds [-Inf,Inf].
 zeta: Gridded real, 4 points in [0.7,1], rate bounds [-Inf,Inf].

% Find peak Hinf over domain
>> lpvmax(norm(G,inf))
PMAT with 1 rows and 1 columns.
ans =
 4
“LPV” calculations

% Unit step response along a
% specified parameter trajectory
>> wn = pgrid('wn',0.5:0.25:1.5)
>> zeta = pgrid('zeta',0.7:0.1:1);
>> G = ss([0 1;
 -wn^2 -2*zeta*wn],...
 [0;1],[1 0],0);

>> ptraj.time = linspace(0,20,500);
>> ptraj.zeta = repmat(0.8,[500 1]);
>> ptraj.wn = 1+0.5*sin(ptraj.time/2);
>> lpvstep(G,ptraj)

% Bound induced L2 norm over allowable (rate unbounded) trajectories
>> lpvnorm(G)
ans =
 7.9801

% Compare with point-wise analysis
>> lpvmax(norm(G,inf))
ans =
 4
Sample of pointwise functions
- balreal
- bode
- connect
- damp
- dcgain
- impulse
- feedback
- gapmetric
- gram
- grid2lft
- h2syn
- hinfsyn
- lft
- loopmargin
- loopsens
- lqr
- lsim
- margin
- ncf
- pole
- step
- sysic

Sample of LPV functions
- lpvbalance
- lpvbalancmr
- lpvbalreal
- lpvestsyn
- lpvncfsyn
- lpvgram
- lpvimpulse
- lpvinitial
- lpvltsim
- lpvnorm
- lpvsfsyn
- lpvstep
- lpvstep
- lpvwcgain
LPV Software – Simulink

Simulink Integration

- Library blocks to simulate grid- and LFT-based models.
- Fast c-code
Uncertain LPV Systems

• Toolbox has objects to model uncertain LPV systems
 – Uncertain grid-based: upmat, upss
 – Uncertain LFT-based: plftmat, plftss

• Analysis and synthesis capabilities
 – Toolbox analysis functions based on IQCs: Theory described further tomorrow afternoon
 – Currently no synthesis functions in toolbox: Recent research in this area by Scherer should provide tools for uncertain LFT-based systems.
Gridded Analysis and Synthesis
LPV analysis: Allowable parameter

Parameter-dependent system G_ρ of the form

$$
\begin{bmatrix}
\dot{x}(t) \\
e(t)
\end{bmatrix} =
\begin{bmatrix}
A(\rho(t)) & B(\rho(t)) \\
C(\rho(t)) & D(\rho(t))
\end{bmatrix}
\begin{bmatrix}
x(t) \\
d(t)
\end{bmatrix}
$$

Allowable parameter trajectories

One parameter:
- Parameter trajectory $\rho(\cdot)$ is allowable if $-1 \leq \rho(t) \leq 1$, $-\beta \leq \dot{\rho}(t) \leq \beta$, for all t

Multiple parameters:
- Parameter trajectory $\rho(\cdot)$ is allowable if $\rho(t) \in P$, $-\beta_i \leq \dot{\rho}_i(t) \leq \beta_i$, for all t, and all i.

MUSYN Inc.
LPV analysis: gain

LPV performance metric

\[
\max_{\text{allowable } \rho} \max_d \frac{\|G_\rho d\|_2}{\|d\|_2}
\]

Suppose there is a differentiable matrix-valued function \(X(\rho) \) satisfying \(X(\rho) > 0 \) and

\[
\begin{bmatrix}
\beta \frac{dX}{d\rho} + A^T(\rho)X(\rho) + X(\rho)A(\rho) & X(\rho)B(\rho) & C^T(\rho) \\
B^T(\rho)X(\rho) & -I & D^T(\rho) \\
C(\rho) & D(\rho) & -I \\
\end{bmatrix} < 0
\]

\[
\begin{bmatrix}
-\beta \frac{dX}{d\rho} + A^T(\rho)X(\rho) + X(\rho)A(\rho) & X(\rho)B(\rho) & C^T(\rho) \\
B^T(\rho)X(\rho) & -I & D^T(\rho) \\
C(\rho) & D(\rho) & -I \\
\end{bmatrix} < 0
\]

for all \(-1 \leq \rho \leq 1\). Along any allowable trajectory, integrate a combination of these to conclude \(\|e\|_{2,T} \leq \|d\|_{2,T} \), bounding the performance metric by 1.
LPV analysis: gain (cont’d)

Analysis condition is $X(\rho) > 0$ and

$$\begin{bmatrix} \pm \beta \frac{dX}{d\rho} + A^T(\rho)X(\rho) + X(\rho)A(\rho) & X(\rho)B(\rho) & C^T(\rho) \\ B^T(\rho)X(\rho) & -I & D^T(\rho) \\ C(\rho) & D(\rho) & -I \end{bmatrix} < 0$$

Pragmatic approach:

- Pick a basis for $X(\rho)$ so $X(\rho) = \sum_{i=1}^{nb} f_i(\rho)X_i$
- Grid the set P
- Solve the resulting convex feasibility problem (LMI) in the matrix variables X_i subject to the constraints at the grid points.
- Assess feasibility of LMI solution on a dense parameter grid
 - Repeat as needed.
Consider the following first order system with the time-varying parameter, $\delta(t)$
LPV Synthesis

Does there exist a controller of the form

\[
\begin{bmatrix}
A(\rho(t),\dot{\rho}(t)) & B(\rho(t),\dot{\rho}(t)) \\
C(\rho(t),\dot{\rho}(t)) & D(\rho(t),\dot{\rho}(t))
\end{bmatrix}
\]

such that the gain-analysis holds for the closed-loop system?

Solution: search for parameter-dependent, positive-definite \(X(\rho)\) and \(Y(\rho)\) satisfying 3 ("full-info", "full-control", "coupled") parameter-dependent LMIs. Same issues remain…

- \(2 \cdot 2^m + 1\) parameter-dependent LMIs.
- Need to hold for all \(\rho \in P\)
- Choice of basis functions for \(X(\rho)\) and \(Y(\rho)\)
lpvsyn, lpvsynOptions

% lpvsyn Synthesizes a controller which stabilizes the plant
% model and minimize the induced L2 norm of the closed
% loop system.
%
% [K,GAM] = lpvsyn(P,NMEAS,NCON,Xb,Yb,opt) returns a LPV controller,
% K, which stabilizes the closed-loop system and achieves an induced
% L2 norm of GAM. Xb and Yb are nbasisx-by-1 array of bases which
% correspond to bounds on the rate-of-variation of the time varying
% parameters. Xb and Yb correspond to the full information and
% control LMI solutions. opt is an lpvsynOptions options which
% allows properties of the LPV synthesis algorithms to be specified.

Consider a rate-dependent, output-feedback control problem involving
stabilization, tracking, disturbance rejection and input penalty. The problem is
take from:

- Meyer, G. and L. Cicolani, “Application of nonlinear systems inverses to automatic
 flight control design-system concepts and flight evaluations,” AGARDograph:
- F Wu, XH Yang, AK Packard and G Becker, “Induced L_2-norm control for LPV
 systems with bounded parameter variation rates,” Int. J Robust and Nonlinear
 Control, 6, 9-10, 1996, pp. 983–998.
LFT Modeling, Analysis, & Synthesis
Data Structures for LPV/LFT Systems

<table>
<thead>
<tr>
<th>Object Type</th>
<th>Block</th>
<th>Matrix</th>
<th>System</th>
<th>Frequency Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal</td>
<td></td>
<td>M</td>
<td>double</td>
<td>ss</td>
</tr>
<tr>
<td>Uncertain</td>
<td></td>
<td>M</td>
<td>umat</td>
<td>uss</td>
</tr>
<tr>
<td>Nominal Gridded LPV</td>
<td></td>
<td>$M(\rho)$</td>
<td>pmat</td>
<td>pss</td>
</tr>
<tr>
<td>Uncertain Gridded LPV</td>
<td></td>
<td>$M(\rho)$</td>
<td>upmat</td>
<td>upss</td>
</tr>
<tr>
<td>Nominal LFT LPV</td>
<td></td>
<td>M</td>
<td>pmatlf</td>
<td>psslft</td>
</tr>
<tr>
<td>Uncertain LFT LPV</td>
<td></td>
<td>M</td>
<td>pmatlf</td>
<td>psslft</td>
</tr>
</tbody>
</table>
LFT Based LPV Systems

\[
\begin{bmatrix}
z(t) \\
y(t) \\
\dot{x}(t)
\end{bmatrix} =
\begin{bmatrix}
M_{11} & M_{12} & M_{13} \\
M_{21} & M_{22} & M_{23} \\
M_{31} & M_{32} & M_{33}
\end{bmatrix}
\begin{bmatrix}
w(t) \\
u(t) \\
x(t)
\end{bmatrix}
\]

\[
w(t) =
\begin{bmatrix}
p_1(t)I_{r_1} & 0 & \cdots & 0 \\
0 & p_2(t)I_{r_2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & p_s(t)I_{r_s}
\end{bmatrix}
\begin{bmatrix}
z(t)
\end{bmatrix}
\]

LFT matrices and systems are defined as a function of parameters:

- Restricted to rational parameter dependence.
- Interconnections of LFTs are themselves LFTs.
TVREAL: Real parameter used to construct LFT models

% Create a TVREAL object with Name, Range, and RateBounds
>> a = tvreal('a',[1 5],[-1 1])
Time-varying real parameter "a", range [1,5], rate bounds [-1,1].
>> class(a)
an = tvreal

% Change Name
>> a.Name = 'x'
Time-varying real parameter "x", range [1,5], rate bounds [-1,1].

% Change Range
>> a.Range = [4 7]
Time-varying real parameter "x", range [4,7], rate bounds [-1,1].

% Change RateBounds
>> a.RateBounds = [-6 6]
Time-varying real parameter "x", range [4,7], rate bounds [-6,6].
LFTDATA: Extract “M-Delta” components of a PLFTMAT

% Create PLFTMAT with two parameters
>> x = tvreal('x', [0 6], [-5 5]);
>> y = tvreal('y', [-2 2], [-1 1]);
>> mat = [x^2+y x*y-7]

% Extract parameters into “M-Delta” form
>> [M,Delta] = lftdata(mat, [], 'Parameter');
>> class(M)
ans =
 Double
>> size(M)
ans =
 6 7
>> M
M =
 0 3.0000 0 0 0 0 5.1962 0
 0 0 0 0 0 0 1.7321 0
 0 0 0 0 0 0 2.4495 0
 0 0 0 0 0 0 1.4142 0
 0 0 0 0 0 0 1.4142 0
1.7321 5.1962 1.7321 1.4142 4.2426 9.0000 -7.0000
LFTDATA: Extract “M-Delta” components of a PLFTMAT

% Create PLFTMAT with two parameters
>> x = tvreal('x', [0 6], [-5 5]);
>> y = tvreal('y', [-2 2], [-1 1]);
>> mat = [x^2+y x*y-7]

% Extract parameters into “M-Delta” form
>> [M,Delta] = lftdata(mat, [], 'Parameter');
>> Delta

PLFTMAT with 5 rows and 5 columns.
The PLFTMAT consists of the following blocks:
 x: Time-varying real, range=[0,6], rate bounds=[-5,5], 3 occurrences
 y: Time-varying real, range=[-2,2], rate bounds=[-1,1], 2 occurrences

% Delta is diagonal with normalized, repeated copies of parameters
>> usample(Delta)
ans =
 -0.8377 0 0 0 0
 0 -0.8377 0 0 0
 0 0 -0.8377 0 0
 0 0 0 0.8588 0
 0 0 0 0 0.8588
% Create three TVREALs

```matlab
>> a1 = tvreal('a1', [-3 -1], [-1 1] );
>> a2 = tvreal('a2', [-5 -4], [-1 1] );
>> b = tvreal('b', [1 2], [-2 2] );
```

% Use TVREALs to generate a PLFTSS

```matlab
>> A = [0 1; a1 a2];
>> B = [0; b];
>> C = [1 0];
>> D = 0;
>> sys = ss(A,B,C,D)
```

Continuous-time PLFTSS with 1 outputs, 1 inputs, 2 states.

The model consists of the following blocks:

- **a1**: Time-varying real, range=[-3,-1], rate bounds=[-1,1], 1 occurrences
- **a2**: Time-varying real, range=[-5,-4], rate bounds=[-1,1], 1 occurrences
- **b**: Time-varying real, range=[1,2], rate bounds=[-2,2], 1 occurrences
Transition from LFT to grid-based LPV

% lft2grid transforms a LFT-LPV into a grid-based LPV model.
>> a = tvreal('a',[1 5],[-1 1]);
>> S = ss(-a,a,1,0);
% LFT can be evaluated on a prescribed grid:
>> r = rgrid('a',[1 2 3],[-1 1]);
>> Sgrid1 = lft2grid(S,r)
PSS with 1 States, 1 Outputs, 1 Inputs, Continuous System.
The PSS consists of the following blocks:
 a: Gridded real, 3 points in range [1,3], rate bounds [-1,1].
% LFT can be evaluated on a uniform grid spanning its range
>> Sgrid2 = lft2grid(S,3)
PSS with 1 States, 1 Outputs, 1 Inputs, Continuous System.
The PSS consists of the following blocks:
 a: Gridded real, 3 points in range [1,5], rate bounds [-1,1].
% grid2lft transforms a grid based LPV model into a LFT-LPV model.
% Grid data fitted with polynomial functions of the parameters

>> Slft = grid2lft(Sgrid,2)

Continuous-time PLFTSS with 1 outputs, 1 inputs, 1 states.
The model consists of the following blocks:
 a: Time-varying real, range = [1,5],
 rate bounds = [-1,1], 1 occurrences

% Repeated parameter copies become an issue for higher order fits
% Obtaining a minimal realization a non-trivial problem.
Sample of pointwise functions

- balreal
- bode
- connect
- damp
- dcgain
- impulse
- feedback
- gapmetric
- gram
- grid2lft
- h2syn
- hinfsyn
- lft
- loopmargin
- loopsens
- lqr
- lsim
- margin
- ncfsyn
- pole
- step
- sysic

Sample of LPV functions

- lpvimpulselp
- vinitial
- lpvlsim
- lpvnorm
- lpvstep
- lpvsyn
- lpvsplit
- lpvwcgain
LPVTools: Open Source Release

- **Release 1.0:**
 - http://www.aem.umn.edu/~SeilerControl/software.shtml
 - Google Search: SeilerControl
 - Static release under GNU Affero GPL License
 - Full documentation (manual, command line, Matlab “doc”)

- **Basic objects and results implemented**
 - LFT Analysis and Synthesis (Packard, Scherer, Gahinet, Apkarian, ...)
 - Gridded Analysis and Synthesis (Wu, Packard, Becker, ...)
 - Model Reduction with Generalized Gramians (Wood, Glover, Widowati, ...)
 - Simulink interface

- **Important gaps remain**
PMAT: Matrix function of real parameters

% Create three parameters
>> x = pgrid('x', linspace(0,6,30));
>> y = pgrid('y', -2:2);
>> z = pgrid('z', 0:5);

% Matrix operations handle multiple parameters
>> M1 = [x y];
>> M2 = [cos(y) z^2];

>> M3 = M1+M2
PMAT with 1 rows and 2 columns.
The PMAT consists of the following blocks:
 x: Gridded real, 30 points in [0,6], rate bounds [-Inf,Inf].
 y: Gridded real, 5 points in [-2,2], rate bounds [-Inf,Inf].
 z: Gridded real, 6 points in [0,5], rate bounds [-Inf,Inf].
PMAT: Matrix function of real parameters

% Create PMAT with dependence on two parameters
>> x = pgrid('x', linspace(0,6,30));
>> y = pgrid('y', -2:2);
>> M = [cos(x) abs(y)];

% Obtain structure with all parameters
>> M.Parameter
ans =
 x: [1x1 pgrid]
 y: [1x1 pgrid]

% "Parameter" is a universal access point to all real parameters
>> M.Parameter.y.Range
ans =
 -2 2

>> M.Parameter.x.RateBounds = [-3 3]
PMAT with 1 rows and 2 columns.
The PMAT consists of the following blocks:
 x: Gridded real, 30 points in [0,6], rate bounds [-3,3].
 y: Gridded real, 5 points in [-2,2], rate bounds [-Inf,Inf].
% Create RGRID domain from PGRIDs
>> Mach = pgrid('Mach', 0.7:0.02:0.8);

>> q = pgrid('q', 125:25:225,[-10 10]);

% Combine into a single RGRID
>> r = rgrid(Mach,q)

RGRID with the following parameters:
Mach: Gridded real, 6 points in [0.7,0.8], rate bounds [-Inf,Inf].
q: Gridded real, 5 points in [125,225], rate bounds [-10,10].
RGRID: Rectangular grid of points defined by real parameters

% Create PMAT from raw data

>> r = rgrid(Mach,q);
>> load FlexAeroData.mat
>> size(FlexAeroData)

ans =

2 3 6 5

>> M = pmat(FlexAeroData,r)

PMAT with 2 rows and 3 columns.
The PMAT consists of the following blocks:
 Mach: Gridded real, 6 points in [0.7,0.8], rate bounds [-Inf,Inf].
 q: Gridded real, 5 points in [125,225], rate bounds [-10,10].
% Concatenation, multiplication, addition of PSS
>> [5*sys sys+4]
PSS with 2 States, 1 Outputs, 2 Inputs, Continuous System.
The PSS consists of the following blocks:
 a: Gridded real, 7 points in [-3,-2], rate bounds [-Inf,Inf].
 b: Gridded real, 4 points in [2,3], rate bounds [-Inf,Inf].

% “Parameter” is a universal access point to all real parameters
>> sys.Parameter.a.RateBounds = [-4 4]
PSS with 2 States, 1 Outputs, 2 Inputs, Continuous System.
The PSS consists of the following blocks:
 a: Gridded real, 7 points in [-3,-2], rate bounds [-4,4].
 b: Gridded real, 4 points in [2,3], rate bounds [-Inf,Inf].
“Pointwise” Frequency Response

% Construct second order LPV system
>> wn = pgrid('wn',1:5);
>> zeta = pgrid('zeta',0.1:0.01:0.15);
>> G = ss([0 1; -wn^2 -2*zeta*wn],...
 [0;wn^2],[1 0],0);

% Bode mag. plot at each grid point
>> w = logspace(-1,1,100);
>> bodemag(G,w)

% Nyquist plot at each grid point
>> nyquist(G,w)
LPV analysis: gain (cont’d)

Analysis condition is $X(\rho) > 0$ and

$$
\begin{bmatrix}
\pm \beta \frac{dX}{d\rho} + A^T(\rho)X(\rho) + X(\rho)A(\rho) & X(\rho)B(\rho) & C^T(\rho) \\
B^T(\rho)X(\rho) & -I & D^T(\rho) \\
C(\rho) & D(\rho) & -I
\end{bmatrix} < 0
$$

Issues:

- This is for 1-parameter, leading to 2, parameter-dependent LMIs.
- If there are m parameters, then the corners of the rate-bounds turn this into 2^m parameter-dependent LMIs.
- Needs to be solved for all $\rho \in P$
- Searching for a positive-definite, matrix function $X(\rho)$
LPV Norm: example

\[-\beta \leq \dot{\delta}(t) \leq \beta\]
Basis functions: 1, \(\delta\), \(\delta^2\), \(\delta^3\)

\[G(s) = \frac{1}{s + 1}\]

\[-1 \leq \delta(t) \leq 1\]

\[G = \text{tf}(1,[1 1]);\]
\[\text{Vals} = \text{linspace}(-1,1,20);\]
\[\text{delta} = \text{pgrid}('\text{delta}',\text{Vals});\]
\[H = \text{delta} \ast G - G \ast \text{delta};\]

\[\text{pnorm} = \text{norm}(H,\text{inf});\]
\[\text{OnGrid} = \max(\text{abs}(\text{pnorm}.\text{Data}(:)));
\text{ans} = \]
\[0\]
\[\text{syslpvnorm} = \text{lpvnorm}(H)\]
\[\text{syslpvnorm} = \]
\[1.0007 \times 10^0\]

LPV analysis of \(1/(s+1)) \ast \delta - \delta \ast 1/(s+1)\)
The generalized plant model, \(G \), is created from 3 subsystems, an unstable continuous-time plant, \(P \), and parameter-dependent rotation matrix, \(R \), and two 1st order actuator models:

\[
\begin{bmatrix}
 x'_1 \\
 x'_2 \\
 v_1 \\
 v_2
\end{bmatrix} =
\begin{bmatrix}
 0.75 & 2 & 0 & 1 & 0 \\
 0 & 0.5 & 3 & 0 & 1 \\
 1 & 0 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2 \\
 f \\
 r_1 \\
 r_2
\end{bmatrix}
\]

The control interconnection structure is given on the next slide. Weighting functions are as follows:

\[
W_\rho = I_2 \quad W_n = \frac{10(s + 10)}{s + 1000} \quad W_f = 1 \quad W_u = \frac{1}{280} \quad W_r = \frac{20}{s + 0.2} I_2
\]
The control problem interconnection with the weighting function is denoted as H. The rate bounds on $\rho(t)$ are ± 5.

% LPV lpvsyn example
>> rho = pgrid('rho', linspace(-pi, pi, 7));
>> rho.RateBounds = [-5 5];
>> pcos = cos(pmat(rho));
>> psin = sin(pmat(rho));
>> A = [0.75 2 pcos psin; 0 0.5 -psin pcos; 0 0 -10 0; 0 0 0 -10];
>> G = pss(A, [0 0 0; 3 0 0; 0 10 0; 0 0 10], [1 0 0 0; 0 1 0 0], zeros(2,3))

% Weights
>> Wp = eye(2);
>> Wn = ss(10*tf([1 10], [1 1000]))*eye(2);
>> Wf = 1;
>> Wu = (1/280)*eye(2);
>> Wr = ss(tf(20, [1 0.2]))*eye(2);
% Control Interconnection Structure
>> systemnames = 'G Wp Wn Wf Wu Wr';
>> input_to_G = '[Wf; u]';
>> input_to_Wp = '[G-Wr]';
>> input_to_Wn = '[dn]';
>> input_to_Wf = '[df]';
>> input_to_Wu = '[u]';
>> input_to_Wr = '[dr]';
>> inputvar = '[df; dr(2); dn(2); u(2)]';
>> outputvar = '[Wu; Wp; G-Wr+Wn]';
>> H = sysic;

% Basis function, LPV Rate-Bounded Control Design
>> b1 = basis(1,0);
>> bcos = basis(pcos,'rho','-psin);
>> bsin = basis(psin,'rho',pcos);
>> Xb = [b1;bcos;bsin]; Yb = Xb;
>> opt = lpvsynOptions('BackOffFactor',1.02);
>>[klpv2,normlpv] = lpvsyn(H,2,2,Xb,Yb,opt);

% Eliminate rate dependence of LPV Rate-Bounded Controller
>> klpv2r = lpvinterp(klpv2,{'rhoDot'},[0]);
>> Klpv = lpvelimiv(klpv2r);
% Generate LPV controller for different rate bounds
>> rb = [0.1 1:10];
>> for ii = 1:numel(rb);
 Hb.Parameter.rho.RateBounds = [-rb(ii) rb(ii)];
 [~,nl1] = lpvsyn(Hb,2,2,Xb,Yb,opt);
 nlpv3(ii) = nl1;
end
Dynamic Inversion Design

% Compare a dynamic inversion controller based on the H-infinity point design and an inverse rotation matrix.

```matlab
>> purotate = pss([pcos -psin; psin pcos]);
>> Kdyninv = purotate*Kh0;
>> cllpv = lft(H,Klpv); cldyninv = lft(H,Kdyninv);
>> ncllpv = lpvnorm(cllpv,Xb); ncldyninv = lpvnorm(cldyninv,Xb);
% Induced L2 norm of the LPV and dynamic inversion closed-loop
>> [ncllpv ncldyninv]
ans =
    1.3725    8.3393
```
% Induced L2 norm of the LPV and dynamic inversion controller

>> [ncllpv ncldyninv]

ans =

1.3725 8.3393
PLFTMAT: Matrix function of real parameters

% (Rational) operations on a TVREAL give back a PLFTMAT
>> x = tvreal('x', [0 10], [-2 2]);
>> y = 3*x^2-1/x
PLFTMAT with 1 rows and 1 columns.
The PLFTMAT consists of the following blocks:
 x: Time-varying real, range=[0,10], rate bounds=[-2,2], 3 occurrences

% Horizontal and vertical concatenation to build matrices
>> x = tvreal('x', [0 10], [-2 2]);
>> M = [x^2 x; -2 1/x^2]
PLFTMAT with 2 rows and 2 columns.
The PLFTMAT consists of the following blocks:
 x: Time-varying real, range=[0,10], rate bounds=[-2,2], 5 occurrences

% Matrix indexing
>> M(1,2)
PLFTMAT with 1 rows and 1 columns.
The PLFTMAT consists of the following blocks:
 x: Time-varying real, range=[0,10], rate bounds=[-2,2], 1 occurrences
PLFTMAT: Access to parameter properties

% Create PLFTMAT with dependence on two parameters
>> x = tvreal('x', [0 6], [-5 5]);
>> y = tvreal('y', [-2 2], [-1 1]);
>> M = [x^2+5 x*y];

% Obtain structure with all parameters
>> M.Parameter
ans =
 x: [1x1 tvreal]
 y: [1x1 tvreal]

% “Parameter” is a universal access point to all real parameters
>> M.Parameter.y.Range
ans =
 -2 2

>> M.Parameter.x.RateBounds = [-3 3]
PLFTMAT with 1 rows and 2 columns.
The PLFTMAT consists of the following blocks:
 x: Time-varying real, range=[0,6], rate bounds=[-3,3], 3 occurrences
 y: Time-varying real, range=[-2,2], rate bounds=[-1,1], 1 occurrences
Most PLFTMAT operations carry over to PLFTSS

% Concatenation, multiplication, addition of PLFTSS

>> [5*sys sys+4]

Continuous-time PLFTSS with 1 outputs, 2 inputs, 4 states.
The model consists of the following blocks:
 a1: Time-varying real, range=[-3,-1], rate bounds=[-1,1], 2 occurrences
 a2: Time-varying real, range=[-5,-4], rate bounds=[-1,1], 2 occurrences
 b: Time-varying real, range=[1,2], rate bounds=[-2,2], 2 occurrences

% "Parameter" is a universal access point to all real parameters

>> sys.Parameter.a1.RateBounds = [-4 4]

Continuous-time PLFTSS with 1 outputs, 2 inputs, 4 states.
The model consists of the following blocks:
 a1: Time-varying real, range=[-3,-1], rate bounds=[-4,4], 2 occurrences
 a2: Time-varying real, range=[-5,-4], rate bounds=[-1,1], 2 occurrences
 b: Time-varying real, range=[1,2], rate bounds=[-2,2], 2 occurrences