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COMPUTATION OF BIFURCATION MARGINS
BASED ON ROBUST CONTROL CONCEPTS

ANDREA IANNELLI*, MARK LOWENBERG ', AND ANDRES MARCOS!

Abstract. This article proposes a framework which allows the study of stability robustness of
equilibria of a nonlinear system in the face of parametric uncertainties from the point of view of
bifurcation theory. In this context, a branch of equilibria is stable if bifurcations (i.e. qualitative
changes of the steady-state solutions) do not occur as one or more bifurcation parameters are varied.
The work focuses specifically on Hopf bifurcations, where a stable branch of equilibria meets a
branch of periodic solutions. It is of practical interest to evaluate how the presence of uncertain
parameters in the system alters the result of analyses performed with respect to a nominal vector
field. Note that in this article bifurcation parameters have a different meaning than uncertain
parameters. To answer the question, the concept of robust bifurcation margins is proposed based
on the idea of describing the uncertain system in a Linear Fractional Transformation fashion. The
robust bifurcation margins can be interpreted as nonlinear analogs of the structural singular value,
or pu, which provides robust stability margins for linear time invariant systems. Their computation
is formulated as a nonlinear program aided by a continuation-based multi-start strategy to mitigate
the issue of local minima. Application of the framework is demonstrated on two case studies from
the power system and aerospace literature.

Key words. Bifurcations, numerical continuation, robust control theory, robust stability
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1. Introduction. Bifurcation analysis studies qualitative changes in the re-
sponse of a nonlinear system (e.g. number and type of steady-state solutions) when
one or more parameters on which the dynamics depend are continuously varied
[27, 21]. This is usually accomplished by selecting a few bifurcation parameters, typ-
ically equal in number to the codimension of the studied bifurcation, based on their
importance for the system. This analysis approach is of recognized importance since
it allows complex dynamic behaviours to be characterized and an understanding of
the system to be gained. However, it does not provide indications on the robustness
of the results to uncertainties in the models. Let us consider for example the presence
of uncertain parameters allowed to vary within a prescribed range. These parameters
reflect the fact that uncertainty is ubiquitous in engineering systems and at any stage
of analysis (from preliminary to detailed). Unlike the bifurcation parameters, in prin-
ciple they are not restricted in number (and are allowed to vary simultaneously) and
their influence on the dynamics may not be known a priori. It is then important to
estimate their effect, and in particular whether bifurcation points can move closer to
operating points deemed safe on the basis of analyses applied to the nominal system.

The study of robustness within a dynamical systems perspective can be attempted
by adopting singularity theory techniques (e.g. Lyapunov-Schmidt reduction) [18], as
shown by recently published research [20, 8]. The central idea is to perform a reduc-
tion of the original dynamics to a lower dimension map, whose singularities represent
transitions between qualitatively different bifurcation diagrams. Even though it is in
principle possible to track these singularities without computing explicitly the reduc-
tion [8], the application of these techniques to systems with a moderately complex
mathematical description and with generic number of uncertainties is not straight-
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2 A. TANNELLI, M. LOWENBERG, AND A. MARCOS

forward and has not been presented in the literature yet. Moreover, this approach
does not directly provide information on the distance from a given (nominally stable)
operating point to the closest bifurcation, that is, a margin to the bifurcation. An-
other approach which considers the effect of uncertainties by focussing on a reduced
dimensional dynamics, namely the one on the centre manifold, is that proposed in
[38]. The main difficulty resides here in the definition of appropriate initial condi-
tions allowing a projection of the long term dynamics on the centre manifold which
accurately incorporates the effect of uncertainties [37].

This article proposes a framework which provides a quantitative measure of the
distance between branches of stable equilibria and of periodic oscillations in the uncer-
tainty space. In other words, the onset of a Hopf bifurcation in the face of worst-case
combinations of the uncertainty is formalised by means of a robust bifurcation margin.
Previous works in the literature looked at the problem of computing perturbations
to bifurcations. For example, in [12] an extension to multidimensional parameter
spaces of standard methods for codimension-1 bifurcations is proposed. The problem
of determining locally closest bifurcations is solved by introducing a normal vector
to hypersurfaces of bifurcation points, and makes use of both direct and iterative
methods. While the latter is limited to static bifurcations (i.e., saddle node, tran-
scritical, and pitchfork), the former is in principle applicable also to the Hopf case.
The direct method consists of solving the full set of equations defining the bifurcation
(plus additional equations to close the problem) and, as pointed out by the authors
of [12], it may be too onerous from a computational point of view. This approach
was applied in [32] to the analysis of static bifurcations in flexible satellites, making a
number of simplifying assumptions, e.g., no dependence of the equilibrium on the un-
certainties and the system having Hamiltonian dynamics. A closely related approach,
which according to their authors generalizes the method from [12], is discussed in [6].
The work considers saddle-node bifurcations only, and the computation of the small-
est perturbation to bifurcation is done by applying the generalized reduced-gradient
method. In essence, this consists of a nonlinear optimization strategy making use of
corrector and predictor steps and solving the system of equations defining the bifur-
cation. However, the issue of local minima is not addressed and the same objection
regarding the total dimension of the problem is envisaged for the Hopf bifurcation
case (not discussed in that work). The idea of using vectors normal to a manifold of
bifurcation points is also present in [16, 34] and other works from the same group,
where the design of robustly stable and feasible processes is pursued.

The problem is studied in this article from the point of view of Linear Fractional
Transformation (LFT) models and structured singular value (u) analysis from ro-
bust control theory [48]. These tools are well established for the analysis of linear
uncertain systems, and provide an analytical answer to stability and performance
problems. Even though a direct application to the nonlinear context is precluded
by their inherently linear formulation, an extension is proposed here for computing
robust bifurcation margins. The core idea is to build an LFT model of the Jacobian
of the uncertain vector field (which will generically depend on the states of the system
and on the uncertainties) and to formulate the computation of the closest Hopf bi-
furcation as the worst-case perturbation matrix for which the LFT becomes singular.
This bears similarities to the problem solved by g, but significant differences hold as
commented in the paper. The determination of the margins is posed as a nonlinear
smooth optimization problem, which can be solved with off-the-shelf algorithms. The
program also allows the type of Hopf bifurcation (subcritical or supercritical) to be
specified by constraining the sign of the first Lyapunov coefficient. Since the opti-
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COMPUTATION OF ROBUST BIFURCATION MARGINS 3

mization problem is nonlinear, the issue of local minima is discussed and different
strategies are proposed to mitigate it. These include a multi-start strategy based on
the construction of a manifold of Hopf points connected to a given solution obtained
by the optimizer. The main advantages of the proposed approach, whose formulation
is detailed in section 3, include: low dimension and computational cost of the solved
problem; improved confidence on the accuracy of the results in terms of global validity
of the optimum; possibility to apply the wealth of analysis strategies available with
(e.g., sensitivity analysis, frequency interpretation of the results).

In section 4 the use of this framework to study nonlinear stability problems arising
in power system and aerospace applications is investigated by considering two case
studies from the literature. First, the sensitivity to a set of physical parameters of the
Hopf bifurcation encountered in a power load system with voltage regulator and dy-
namic load model is considered in section 4.1. It is shown that the application of the
robust bifurcation margin allows on one hand to retrieve the same findings reported
in [13] (which considered a first-order approximation of the sensitivity), and on the
other to investigate more sophisticated types of sensitivity analyses where coupling
among uncertain parameters are also accounted for.

Then, an aeroelastic flutter case study is analyzed in section 4.2. Flutter is a self-
excited instability in which aerodynamic forces on a flexible body couple with its
natural vibration modes producing oscillatory motion. In the presence of nonlineari-
ties, the system typically exhibits loss of stability of the equilibrium in the form of a
Hopf bifurcation with ensuing Limit Cycle Oscillations (LCO). Results show a good
match with prior studies that considered linear robust analyses [25], and highlight the
unique capability of this framework to allow the type of Hopf bifurcation (subcritical
or supercritical) of which robustness is studied to be chosen in the analysis.
Bifurcation analysis has been extensively applied to both application fields [41, 11],
but the effect of uncertainties has received far less attention. The results in section 4
show that the proposed framework can be a valuable tool for analyzing robustness in
the nonlinear context and a more in depth application to these challenging problems
is a future research direction.

Preliminary results of this work were presented in [24].

Notation: [x;y] denotes vertical concatenation of two vectors € R™ and y € R™.
[T| indicates cardinality of a set I, 3(P) is the maximum singular value of a matrix
P € R™" 7 is the complex conjugate of 7 € C" and (r, q¢) = 7 q is the scalar product
between complex vectors r,q € C™. Where evident from the context, subscripts of
vectors and matrices are used to specify their elements (e.g., 3 is the third element of
2 € R™); the symbol "is used for solutions of an optimization; the symbol ~is used for
uncertain quantities; diag(-) indicates a block diagonal matrix made up of elements
in -.

2. Background. This section provides an overview on the techniques and tools
employed in the work. The first subsection presents the theoretical background of
bifurcation (2.1.1) and numerical continuation (2.1.2). This is followed by a short
introduction to the robust control concepts of LFT models (2.2.1) and p analysis
(2.2.2).

2.1. Nonlinear dynamics approaches.

2.1.1. Bifurcation theory. Consider an autonomous nonlinear system of the
form
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4 A. TANNELLI, M. LOWENBERG, AND A. MARCOS

where x € R™ and p € R" are respectively the vectors of states and bifurcation
parameters, and f : R™ x R™ — R"= is the vector field. In this work f is assumed
to gather smooth nonlinear functions (f € C*). Therefore, the Jacobian matrix of
the vector field V. f : R" x R"™ — R"=*"= denoted here by J, is always defined.

The vector xg is called a fixed point or equilibrium of (2.1) corresponding to pg
if f(xo,p0) = 0. Let us denote with ng the number of eigenvalues of J(xg,pg) with
zero real parts, respectively. Then x( is called a hyperbolic fixed point if ng = 0,
otherwise it is called nonhyperbolic. Bifurcations of fixed points are concerned with
the loss of hyperbolicity of the equilibrium as p is varied. Two scenarios can take
place: static bifurcations and dynamic bifurcations [27, 21]. The former arise when
J is singular at an equilibrium, i.e., it has a zero eigenvalue. The common feature
of static bifurcations is that branches of fixed points meet at the bifurcation point.
In the case of dynamic bifurcations, branches of fixed points and periodic solutions
meet. This case, also referred to as Hopf bifurcation, is the focus of this work and is
formally described by the following theorem.

THEOREM 2.1 ([21] Hopf bifurcation theorem). Suppose that the system & =
flz,p), x € R™ and p € R has an equilibrium (zg,py) at which the following
properties are satisfied.

1. J(xg,pH) has a simple pair of pure imaginary eigenvalues and no other ei-
genvalues with zero real parts. This implies, for the implicit function theorem,
that there is a smooth curve of equilibria (x(p),p) with x(py) = xg. The ei-
genvalues v(p), v(p) of J(x(p)), with v(py)=iwg, vary smoothly with p.

2. It holds

(22) eV, = 20

Then there is a unique three-dimensional center manifold passing through (xm,pm) in
R™ xR and a smooth system of coordinates for which the Taylor expansion of degree
3 on the center manifold is given in polar coordinates (p,8) by

p= (lop+11p*)p,

(2.3) i
0 =w+lap + I3p?,

where ly, 11, la, and I3 are real coefficients defining the manifold. If Iy # 0, there is a
surface of periodic solutions in the center manifold which has quadratic tangency with
the eigenspace of v(p), v(p). If l1 < 0, then these periodic solutions are stable limit
cycles, while if Iy > 0, the periodic solutions are repelling.

Note first that the theorem is typically stated considering a scalar p since the Hopf
bifurcation is codimension-1. Condition 1 of Th. 2.1 requires that the Jacobian of the
vector field has a pair of purely imaginary eigenvalues (and no other eigenvalues on the
imaginary axis). Condition 2, also known as the transversality condition, prescribes
that these eigenvalues are not stationary with respect to p at the bifurcation. A
fundamental parameter determining the dynamic behaviour in the neighborhood of a
Hopf point is [, also called the first Lyapunov coefficient. Its value determines whether
the Hopf bifurcation is subcritical or supercritical, and its analytical expression is given
by [27]

(24) ll = ﬁ Re(r, O(Q7 q, (j) - 2B(qa AilB(qa (j)) + B((j, (ZZWHIn - A)ilB((L Q)»
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COMPUTATION OF ROBUST BIFURCATION MARGINS 5

Here the complex vectors r, ¢ € C™= satisfy
(2.5) Jq = iwngq, JTr = —iwgr, (r,q) = 1.

The functions B : R™ x R — R" and C : R™ x R" x R" — R"= are the tensors
of second and third order derivatives evaluated at x 7, respectively. For example, for
vectors &, ¢, x € R™, B(,¢) and C(&,, x) are in R"* with components

Bz(§,§)= ZI 62][‘7,(3:7]7)

Ejgkra 1= 1527~-~7nw7

(2.6) PR L PR
: n
~ P fi(z,p) ‘
£7§ X Z 8$ o fj%Xla 1= 1,2,...,711.
Gk, =1 IR =gy p=py

2.1.2. Numerical continuation. The computational tool of bifurcation analy-
sis is numerical continuation, providing path following algorithms allowing implicitly
defined manifolds [19] to be computed. These schemes are based on the implicit func-
tion theorem (IFT) [45], which guarantees, under the condition that .J is non-singular
at an initial point (xg,pp), that there exist neighbourhoods X of zy and P of py and
a function g : P — X such that f(z,p) = 0 has the unique solution z = g(p) in X.
Examples of numerical techniques to compute the implicit manifold g are Newton-
Raphson, arclength, and pseudo-arclength continuation [19], efficiently implemented
in freely available software, e.g., AUTO [14], and COCO [10].

A general continuation problem, so called extended, can be formulated as follows
[9, 10]

o e (3)()
$:R™ - R™,  U:R™ —R™,

where ® defines the zero problem in the vector u of continuation variables, ¥ denotes
a family of monitor functions and A is a vector of continuation parameters. It is
straightforward to see that the goal of tracking equilibria of the vector field f can
be pursued by solving the zero problem only with ® = f, and u = [z;p]. However,
the extended continuation problem in (2.7) allows for a greater variety of problems
to be solved, as the related concept of restricted continuation problem shows. Let
I C{1,...,ny} be an index set and I its complement in {1,...,nx}. Let A\j = {\;|i € I}
and consider the restriction F'(u, A\)|y,=x+ satisfying the IFT at some point (u*, \* =
U(u*)). Then F(u,A)|x=x+ defines a continuation problem for a d-manifold with
d =n, — (m+11]). A and Ap are called the set of active and inactive continuation
parameters respectively, since the former changes during continuation, while the latter
remain constant. Analogously, equations corresponding to Aj are inactive constraints,
while equations corresponding to A; are active constraints, because they impose an
additional condition on the solutions to the set of zero problems. The formulation
(2.7) is implemented in the software COCO, which is used for all the continuation
analyses performed in this work.

2.2. Robust control theory.

2.2.1. The Linear Fractional Transformation paradigm. Linear Fractional
Transformation (LFT) is an instrumental tool in robust control theory for analysis
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6 A. TANNELLI, M. LOWENBERG, AND A. MARCOS

and control of uncertain systems [48]. For the sake of clarity, first an intuition of the
reasoning behind LFT is given, followed by a more formal definition.

The classic interpretation of an LFT is in terms of input to output relationship of
a feedback interconnection. Let us consider a linear time invariant (LTI) system with
transfer matrix (i.e. matrix of transfer functions) Mas € CP2*% | input v and output
y. The system Moo is assumed to be exactly known, and thus is also termed nominal.
If the model has uncertainties (which will be better characterized later), these can be
modelled with an operator A, € C#*P1 with input z and output w. The effect of A,
on My, can then be described by introducing the transfer matrices M1, M1 and Ms;.
For example, in the case of parametric uncertainties, these will be simply static (gain)
matrices, while for the case of unmodelled dynamics these could also have dynamic
terms (e.g. low pass filters). The key point is that, by choosing these matrices, the
analyst can describe with a certain flexibility how the perturbation affects the nominal
system. Given this setting, Figure 1 shows the standard representation of LFT.

YA pa—
w= A,z
w‘M i = Z:M11M+M12’U
»| M1 12 y = Mayw + Mayv
UMy My|Y
—>

Fic. 1. Standard feedback representation of an LFT.

The central idea is thus to represent the uncertain system as a feedback of known
components (the transfer matrices M;;) with uncertain (the operator A,) ones. In
practice, this is done by pulling out of the system the unknown parts, so that the
problem appears as a nominal system subject to an artificial feedback. Available
toolboxes [28] allow this operation to be efficiently performed and provide the analyst,
given a description of how the uncertainties affect the system, with the matrices M;;.

In order to formally define an LFT, let us denote by M € C®1tr2)x(a1+a2) the
partitioned transfer matrix (also termed coefficient matriz)

My Mo
(2.8) M= {le MQJ ,

and let A, € C%*Pt the uncertain operator. The LFT of M with respect to A, is
defined as the map F : C1t*Pr — CP2%42

(2.9) F(M,Ay) = May + Moy Ay (I — My A) ™ M.

With reference to Fig. 1, F(M,A,) compactly defines the uncertain transfer matrix
from input v to output y of the nominal system Mo, when this is subject to A,.
Indeed, for A, = 0 (no uncertainties in the model) it holds F(M,A,) = Mas. It is
also important to observe that My is, within this input to output framework, the
transfer matrix seen by the perturbation block A,,. A crucial feature apparent in (2.9)
is that the LF'T is well posed if and only if the inverse of (I —M71A,,) exists. Otherwise,
F(M,A,) is said to be singular. Singularity of the LFT is typically associated with the
loss of stability of the underlying uncertain system, and thus finding the uncertain
perturbations for which this happens is typically the objective of robust stability
analysis (details on this will be provided in Sec. 2.2.2).
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COMPUTATION OF ROBUST BIFURCATION MARGINS 7

In robust control, A,, typically gathers parametric and dynamic uncertainties and
can be represented as

A, = diag(0;l4;,01a;, Ap, ),

(2.10) . .
i=1,...np, j=ngr+1,.,ng+nc, k=1,...,np,

where the uncertainties associated with ng real scalars d;, nc complex scalars d;,
and np unstructured (or full) complex blocks Ap, are listed in diagonal format.
The identity matrices of dimension d; and d; take into account the fact that scalar
uncertainties might be repeated in A, when the LFT of the system is built up. For
example, if a matrix has the parameter §; on three different rows, in order to cast
it in the form of an LFT (2.9) it will be necessary to have d;=3 [28]. Typically the
uncertain parameters are normalized by scaling of M such that A, = 0 coincides with
the nominal system (i.e., uncertain parameters at their nominal values) and (A,) <1
when uncertainties take values in the allowed interval. The set in (2.10) is generally
referred to as structured because of the block diagonal structure. This feature, enabled
by the LFT modeling paradigm, is known to provide less conservative results in the
analysis of uncertain systems with respect to unstructured representations (used, for
example, in the celebrated small gain theorem [48]).

This work leverages the LFT framework for analysis of nonlinear systems. The
interpretation given previously, while providing insights into this paradigm, cannot
be thus readily used since it requires transfer matrices. For this reason, an alternative
viewpoint on LFT is proposed.

Let us start by considering the state-space (SS) representation (A, B,C, D) of the
nominal LTI system with transfer matrix Moo

(2.11a) & = Azx + Bu,
y = Cx + Du,
(2.11b) Mosy(s) =D +C(sl,, — A)'B,
where s is the Laplace variable. Define now
A B 1

It can then be shown that F(M,,A,) = Mas. This follows directly from
1 1
(2.13) F(My,Ap) =D +Cln, (In, — gA)”B =D +C(sl,, —A) B = M(s),

where the diagonal structure of A, and the fact that % # 0 have been exploited.
This result shows that the LFTs generalize the realization of transfer matrices into
state-space (SS) representations to the case of rational multivariate matrices. For this
reason, the LFT paradigm can also be regarded as a realization technique [28].

This interpretation also highlights a paramount aspect for the present work. The
poles of (2.11) are typically found via eigenvalue analysis of A. Equivalently, the
system has a given pole v if (vI,, —.A)~! is singular. Note that this latter condition
can be formulated as the singularity of the LFT F(M,,A,) by replacing s = v. In
particular, the LTT (2.11) has a purely imaginary eigenvalue (i.e. it is neutrally stable)
if there exists w > 0 for which F(M,,,A,) is singular with s = iw.

Let us consider now the case when the LTI system (2.11) is subject to uncertain-
ties. The problem can be described with the LFT formalism considering two blocks

This manuscript is for review purposes only.
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8 A. TANNELLI, M. LOWENBERG, AND A. MARCOS

for the uncertain operator, namely A, containing the structured perturbations, and
A,. The coefficient matrix M is partitioned correspondingly

A A B
(2.14) M = .A21 .AQQ 81 s A= diag(A,,, Au)
C ¢ D

A pictorial representation of the LFT F(M, A) defined by the operators in (2.14) is
given in Figure 2.

Ay |[¢&—

A

—Ay

Tl A Ap| B|_®
Wyl Ay A | B |2
—»C ¢ |D|IL—»

Fic. 2. LET of an uncertain state-space model.

The difference between the representations in Figure 1 and Figure 2, both describ-
ing an uncertain system, is that in the former the system is described via its transfer
matrices, while in the latter a state-space representation is used. One can switch from
the first to the second representation by exploiting the fact that F(M,,A,) = Mo
(which was proved above).

The consequence of this change of representation is that the new block A, appears.
Correspondingly, the coefficient matrix M (2.14) now features the matrix M, (2.12)
plus other matrices describing the effect of the uncertainties on the state-matrices.
Note indeed that the transfer matrices M1, My2 and Ms; will also be expressed here
with their SS representation. Let us assume now that (2.11) is nominally stable (i.e.
A has all the eigenvalues in the left half-plane). Then the uncertain LTI system has
a purely imaginary eigenvalue if there exist w > 0 (with s = iw) and a combination
of the uncertainties in A,, for which F(M, A) (2.14) is singular.

The advantage of this representation, which is key for the present work, is that
LFTs can be constructed even for systems which do not have transfer matrices, if an
appropriate state-space description is available. Sec. 3.1 will be devoted to showing
which crucial steps can be taken in order to apply this rationale to the prototype of
vector field introduced in (2.1).

Note finally that a useful property when dealing with LFTs featured by distinct
A-blocks is that interconnections of LFTs can be rewritten as one single LFT. This
is only a numerical aspect relative to the construction of LF'T models, but it greatly
helps to separate modeling-specific details of the system under consideration and to
ease the algebraic manipulations. By virtue of this, it holds for the LFT defined in
(2.14)

(2.15) F(M,A) = F(F(M,A,), Ay).

2.2.2. p analysis. The p analysis technique leverages the key features of LFT
modeling reviewed in the previous section to address the robust stability analysis of
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COMPUTATION OF ROBUST BIFURCATION MARGINS 9

LTT systems in the face of uncertainties. The structured singular value is a matrix
function denoted by ua(M) and several equivalent definitions are available in the
literature [48, 15, 35]. A definition which encompasses the aspects relevant to this
work is

-1
(2.16) ua(M) = (mAin(/{ : F(F(M,A,),A,) is singular, 6(A,) < /s) ,

where & is a real positive scalar, and pua (M) = 0 if the minimization problem has no
solution.

Based on the point of view of LFT as realization technique, an interpretation of
the p analysis technique is as worst-case eigenvalue analysis for uncertain systems.
Let us focus on the operator A of the LFT F(M,A) defined in (2.14). The block
A, does not represent a true uncertainty of the system, and its meaning is that the
singularity of the LET is checked against all the possible eigenvalues on the imaginary
axis. For the sake of understanding, one can think of realizing this block by considering
a set of frequencies w and evaluating A, at v = iw. By doing this, A = A, and the
problem defined in (2.16) consists of finding the perturbation matrix with the smallest
maximum singular value (also termed worst-case matrix) such that the uncertain
system has a pair of purely imaginary eigenvalues +iw. Therefore, pa (M) provides a
robust stability (RS) test for an uncertain linear system. Specifically, if ua (M) > 1 a
candidate (i.e., within the allowed range of the uncertainty set) perturbation matrix
exists that violates the well-posedness of F(M,A). In essence, the uncertain state-
matrix has the eigenvalues s = 4iw for a certain combination of the uncertainties
in the allowed range. On the contrary, if ua(M) < 1 then there is no perturbation
matrix inside the set A such that the F(M,A) is ill-posed and thus the system is
robust stable within the range of uncertainties considered.

In the most established algorithms [2], p is evaluated on a discretized frequency
range. That is, the A, block is realized as discussed before on a pre-selected grid
of frequencies, and the corresponding set of matrices M (iw) (the dependence on the
frequency is now stressed) is computed. Subsequently, pa (M (iw)) is computed and
a frequency-domain representation of the results is obtained. This is done in order
to avoid the need to solve the optimization problem (2.16) on a continuous range of
frequency, which proves computationally challenging. An exception to this common
practice worth mentioning is represented by recently developed Hamiltonian-based
algorithms (i.e. SMART library [39] and Robust Control Toolbox from MATLAB
R2016b) which guarantees the validity of results over a continuous range of frequen-
cies.

Finally, note that (2.16) is an NP-hard problem with either pure real or mixed
real-complex uncertainties [5], thus all pu algorithms work by searching for upper
and lower bounds. The upper bound puyp provides the maximum size perturbation
7(AUB) = 1/uyp for which RS is guaranteed, whereas the lower bound pzp defines
a minimum size perturbation 6(ALB) = 1/urp for which RS is guaranteed to be
violated. Along with this information, the lower bound also provides the matrix ALB
determining singularity of the LFT.

3. Main results. In this section the main result of the work is presented. The
problem addressed by this article is formally defined in section 3.1 and in section
3.2 a solution by means of a nonlinear optimization program is proposed. The step-
by-step presentation, from Program 3.1, which calculates the smallest perturbations
making the Jacobian unstable, to Program 3.4, which computes the closest subcritical
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and supercritical Hopf bifurcations, aims at clearly presenting the formulation of
robust bifurcation margins. Note that only Program 3.2 and Program 3.4 are actually
needed to solve the problem (depending on whether the type of Hopf bifurcation is
specified or not). In section 3.3 a multi-start strategy is described, within the extended
continuation paradigm, to mitigate the issue of local optima. Finally, in section 3.4 a
critical comparison with an alternative method from the literature solving a similar
problem is discussed.

3.1. Problem statement. The usual starting point in bifurcation analysis is
Eq. (2.1), where f is a nominal vector field, meaning that the only dependence
is on the state z and bifurcation parameter p. The latter is of size n, = 1 for
continuation of equilibrium points since all their bifurcations have codimension 1, and
thus 1 parameter is sufficient for its analysis (this of course includes the case of Hopf
bifurcations, see Theorem 2.1). Consider the case when parametric uncertainties affect
the dynamics, e.g. because of lack of confidence on the values of model parameters or
simplifying assumptions underlying the model. The presence of uncertainties can be
modelled by introducing the uncertainty vector §

(3.1) 0 =[01;...;0i5...0ns], 0 €R™.

The vector field depends now on 4, in addition to x and p. To highlight this, we
denote the uncertain vector field by f and the associated Jacobian by J

(32a) &= f(z,p,0),
(3.2b) fiR™ xRxR™ 5 R™, feC™,
(3.2¢) J:R™ x R x R — RM=X",

The objective of the work is then to compute the margins of stable equilibria from the
closest Hopf bifurcation for nonlinear systems affected by parametric uncertainties.
To better understand this, assume that the nominal system f has a Hopf bifurcation
point (zg,pm ), while for another value of the bifurcation parameter py a stable fixed
point Zg exists for f. The goal is to determine the smallest (or worst-case) perturba-
tion 0 € 6 such that f undergoes a Hopf bifurcation at py. It is key to observe that the
Hopf bifurcation is triggered by perturbations in §, while the bifurcation parameter
is fixed at pg. The reason for this is that the aim here is to compute the margin of
a certain condition from the occurrence of the bifurcation. Thus, p, which generally
defines an operating condition (e.g. load power in an electric power system, speed for
an aircraft) is kept fixed at the value py which identifies the condition for which the
margin is computed. This is different from what is done in the direct method [12]
(the other approach that looked at a similar problem) where there is no distinction
between bifurcation and uncertain parameters, both collected in p (which is then mul-
tidimensional). As a result of this, all the entries of p are allowed to be perturbed in
order to trigger the bifurcation, whereas here the distinction between p (of dimension
1) and ¢ (of dimension ng, depending on how many uncertainties are considered) is
clear. See section 3.4 for a thorough comparison with the direct method.
It is often relevant to distinguish between supercritical and subcritical Hopf bifurca-
tions, hence two distinct worst-case perturbations will be considered. For the sake
of readability, this distinction will be highlighted in the text when relevant but the
notation used will be ¢ in both cases.

In order to quantify the margin to the closest bifurcation, and thus to allow the
concept of worst-case uncertainty to be formalized, a metric for the magnitude of the
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perturbation must be adopted. The adopted metric should measure in some quanti-
tative form the perturbation to which the system is subject. This task is arbitrary
and a common approach from robust control is followed [48] (see also section 2.2.2).

Consider a generic uncertain parameter d, with wy indicating the uncertainty level
with respect to a nominal value dy and d4 € [—1, 1] representing the normalized un-
certainty range. Note that dy and wy are typically fixed by the analyst based on the
knowledge of the nominal value and dispersion of the parameter d respectively. A
multiplicative uncertain representation of d is thus obtained as

(33) d= (1 + wdéd)do,

where 04 = 0 corresponds to the nominal value of d, while §; = +1 represents a
perturbation at the extreme of the parameter range (e.g., a variation of +20% from dg
if wg = 0.2). Once the normalization (3.3) is applied to all the uncertain parameters in
(3.1), a possible scalar metric (or norm) to quantify the magnitude of the perturbation
is the largest of the absolute values of the elements in §. This can be equivalently
expressed as 7(diag(d)), i.e., the maximum singular value of the diagonal matrix with
elements of § on the diagonal. Such a metric quantifies the deviation of the uncertain
parameters from their nominal values along the direction of the parameter space
where this is largest. The objective is thus to compute the perturbation vector with
the smallest possible norm, providing therefore the distance from the closest Hopf
bifurcation.

In fact, k., = 6(diag(d)) can be regarded as a robust margin from bifurcation be-
cause k,, < 1 means that a candidate (i.e., within the allowed range of the uncertainty
set) perturbation exists which determines a Hopf bifurcation. Thus, the equilibrium
Z( of the nominal vector field is not robustly stable at pg. On the contrary, if k,, > 1
then there is no perturbation inside the allowed set which is capable of prompting a
Hopf bifurcation. This is pictorially represented in Figure 3, where on the x-axis is
reported the bifurcation parameter and on the y-axis the margin k,, (note that the
case pyp < py where a Hopf bifurcation is encountered by increasing p is assumed here
without loss of generality). When the line k,,, = 1 is crossed, the system is operated in
a region where Hopf bifurcations can occur in the face of the uncertainties accounted
for in the system (shaded area).

K

IH

Fic. 3. Concept of robust bifurcation margins.
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3.2. Solution via nonlinear optimization. The fundamental idea to address
the stated objective is to exploit the interpretation of LFTs discussed in Sec. 2.2.1.
Consider for a moment only Condition 1 of Theorem 2.1, which prescribes a pair of
purely imaginary eigenvalues for the Jacobian. If J is interpreted as the uncertain
state-matrix of the linear case, an LFT model of the former with respect to the
uncertain parameters in 6 can be built up (numerically or analytically [29]). The
main difference from the linear case is that in general J is also a function of the states
of the system z. This reflects the fact that in the nonlinear context uncertainties
have a twofold effect on stability. They directly affect the matrix J as independent
variables, but also indirectly by changing the location of the equilibrium (around
which the vector field is linearized). The latter is a distinctive feature of the nonlinear
setting, since in the linear case the location of the equilibrium does not have any effect
on the spectrum of the state-matrix, and thus on stability. In full generality, the LFT
of the Jacobian F(Mj, A) can be written as

(3.4a) F(Mj, A) = F(F(F(Mj,Ay), Ag), Ay),
(3.4b) A = diag(Ay, Ay, Ay), Mjy=[Mj Mj ;Mj Mj |,
(34C) Au = diag(61[d1 yoeey 51'Idi, ceny 5néldn5 ),
(3.4d) Ay = diag(w1 Ly, oo Tjleyy ooy Ty In, ),
1
(3.4e) A, ==1,, v=iw,
v

where (3.4a) exploits the property of interconnected LFTs, and A, is a particular
instance of the structured uncertainty set defined in (2.10), considering only real pa-
rameters. Compared to the linear case (2.15), A features now an additional structured
block A, which arises when performing the LFT modeling of J due to the states ex-
plicitly appearing in the Jacobian, and for which a similar representation to the one
for A, is employed. A, finally restricts the attention to purely imaginary eigenvalues
of J with frequency w.

Condition 1 of Theorem 2.1 can then be expressed as the singularity of the LFT
(3.4a). This is the central step of the proposed extension of y from the linear con-
text, where J would be the uncertain state-matrix, to the nonlinear one. In fact,
computes by definition the worst-case perturbation matrix which makes the underly-
ing LFT ill-posed and employs the same metric (2.16) as the one used to define the
robust bifurcation margin k,,. It follows indeed from the definitions and properties
commented earlier that k,, = d(diag(d)) = (A,). Specifically, &, is the reciprocal
of p and it has been adopted here because of its straightforward meaning of distance
(or margin) to the onset of a bifurcation. Note in this regard that the symbol k,,
was used in the early stages of robust control with the name of excess stability margin
[43, 42].

The discussion above paves the way for the nonlinear program presented next,
which aims to compute the smallest perturbation for which J has a pair of purely
imaginary eigenvalues.

PROGRAM 3.1.

(35&) ('1: Do, )
(3.5b) r%%n km such thate F(Mj, A)is smgular,
(3.5¢) 7(Ay) < km

X = [z;6;w),
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where X is the vector of optimization variables including: states x; uncertain param-
eters J; and frequency w. X will indicate the solution vector gathering z, 5, and @
respectively. Let us examine the constraints of the program. Eq. (3.5a) guarantees
that the solution (%, 5) corresponds to an equilibrium point for the system. Eq. (3.5b)
ensures that J has a pair of complex eigenvalues v = +&, and Eq. (3.5¢) bounds the
size of the perturbation matrix.

This is a similar optimization problem to that in (2.16), with two crucial dif-
ferences: constraint (3.5a), and the addition of A, in the block A of F(Mj,A) (to
which, notably, constraint (3.5¢) does not apply). Due to these differences, available
algorithms for  cannot be applied to compute solutions of (3.5), thus alternative ways
should be pursued. Let us examine closely (3.5b), which prescribes singularity of an
LFT. According to the definition given in (2.9), necessary and sufficient condition
for the well-posedness of a generic LFT F(M,A,) is the existence of the inverse of
the matrix (I — M11A,). Note that My, is, as also previously observed, the transfer
matrix seen by the perturbation block A,. In the context of the LFT F(Mj,A)
introduced in (3.4), this means that the singularity constraint (3.5b) holds if and only
if det(I — Mj,;A) = 0. This, in turn, can be recast as nonlinear constraints in the
optimization variables X.

As for (3.5¢), this is a non-smooth constraint because of the maximum singular value
operator, but it can be drastically simplified by exploiting the structure of A, (3.4c).
Indeed this constraint is equivalent to

(36) - k‘m S (Sl S k‘m, 1= 1, ey Ng,

which is a set of linear inequalities in the optimization variables and the objective
function k,,. Note that a similar relaxation would hold also for complex scalar uncer-
tainties, not considered in this work.

Based on the previous discussion, the following smooth nonlinear optimization
problem is proposed to solve Program 3.1.

PROGRAM 3.2.

(3.7a) f(z,p0,6) =0,
(3.7b) m)}n Ky, such that{ det(I — Mj,,A) =0,
(37C) _km < 61 < kmy 1= 1a sy g,

X = [x;d;w], Nectrs Zﬂw+2+n5,

where n.-s denotes the number of total constraints of the optimization.

The key idea behind Program 3.2 is to enforce singularity of the LFT (3.5b) by
using directly the determinant condition represented by constraint (3.7b). In [40]
this is listed among the known methods for the computation of urp, and examples
of related algorithms can be found in [22, 47]. The approaches presented in those
works, however, are limited to the case of linear systems, i.e., they represent alter-
natives to well-established g lower bounds algorithms such as the power iteration
[36] and the gain-based method [44]. To the best of the authors’ knowledge, this
is indeed the first time that the concept of structured singular value is used in the
context of worst-case bifurcations of a nonlinear vector field. Moreover, Program 3.2
recasts the optimization so that the objective function and the constraints are smooth.
This differs from the aforementioned works where the optimization was performed by
minimizing the nonsmooth function 6(A,). This is overcome here by considering

This manuscript is for review purposes only.



[$119;1

J

wno

v Ot Ot Ot

~ =1 =3 I

-3

14 A. TANNELLI, M. LOWENBERG, AND A. MARCOS

the relaxation commented in (3.6) and introducing the objective function k,, as an
additional optimization variable.

Remark 3.1. Constraint (3.7b) consists of two (real and imaginary parts of the

determinant) nonlinear equality constraints in the variables X. By using Laplace
expansion of the determinant [1] and the fact that A is structured, an analytical
expression for the gradient of (3.7b) with respect to § and x can be obtained and
provided to the optimizer. As for w, this is more tedious and therefore finite differences
are employed.
Note also that, from a continuation perspective, (3.7b) can be regarded as an analog
of the real scalar test functions commonly used to detect Hopf bifurcations [3]. The
latter can be efficiently formulated by means of bordered matrices techniques and
have the property that the test function has a zero at a bifurcation point. The main
difference here is that (3.7b) is complex, thus consists of two real scalar equations.
This is due to the fact that the frequency w of the purely imaginary eigenvalues appear
explicitly in the constraint (and thus is an additional independent variable), which
is different from the test functions formulation. This is an important feature of the
developed approach, and possible ways to exploit it will be discussed later.

Enforcing the transversality condition

Program 3.2 allows worst-case perturbations to be computed such that the Ja-
cobian of f linearized around the perturbed equilibrium point has a pair of purely
imaginary eigenvalues. This, however, does not guarantee that the perturbed system
undergoes a Hopf bifurcation because transversality (Condition 2 of Theorem 2.1) is
not automatically verified. Constraints guaranteeing that transversality is satisfied
can be appended to (3.7) in different ways, including using test functions [3] or au-
tomatic differentiation [23]. Here an approach leveraging the versatility of the LFT
paradigm is proposed. Consider a small fixed constant €, which defines the perturbed
bifurcation parameter p., = (1 + €,)po. The LFT .F(M}, A°) of the Jacobian at p,
can be written following (3.4) as

(3.8a) F(M5,A%) = F(F(F(MS,A}), AL, Aw),

(SSb) At = diag(Au’ Aiv Azez)v M} - [MLejuM}m’ MEle;zz] ’

(3.8¢) Ay = diag((1 + ex)w1ley, ., (L +€2)xily, ooy (1 + €0)xn, In, ),
1

(3.8d) A = ;Inm, ve=r¢€,+ (1 +€,)w,

where €,, €., and ¢, are unknown scalars described later. The following optimization
problem is then proposed to determine the worst-case perturbation for which both
conditions of the Hopf theorem are guaranteed to hold, that is, to calculate the margins
to the closest Hopf bifurcation point.

PROGRAM 3.3.

(39&) f(xaﬁOa 5) = 07

(3.9b) det(I — Mj,,A) =0,
(3.9¢) H}}n ky, such that< —k,, <d; <k,

(3.9d) F(1+ )2, pe,,6) =0,
(3.9¢) det(f — M5, A%) =0,

X =[z;6;w; €5 €05 €0)y  Netrs = Ny + 2+ N + 1y + 2.
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The first set of constraints (3.9a-3.9¢) is identical to those in Program 3.2. The
constraints (3.9d-3.9¢) instead ensure that the Jacobian linearized at p., has an ei-
genvalue v¢ with real part €, (3.8d). Making use of a finite difference approximation,
it follows from the definition in (2.2) that Iy = E—: Therefore, existence of a solution
to Program 3.3 with €, # 0 guarantees a Hopf bifurcation for the system.
Underlying Program 3.3 there is a perturbation argument which builds on the
application of the IFT to the states x and the eigenvalue v of the vector field f(:v7 D, 3)
for fixed § and p in a neighbourhood of pg. Indeed, at p = pg, it holds x = & and
v = iw for the constraints (3.9a-3.9¢). When perturbing p by a small increment e,
a first order approximation for z and v is assumed, and reflected in the choice of the
scalars €, (3.8¢c), as well as ¢, and €, (3.8d). A vector €, with an element for each
component of x, could also be considered, by adding n, — 1 unknowns to Program 3.3.

Remark 3.2. Program 3.2 does not mathematically guarantee the onset of a Hopf
bifurcation because it does not take into account the transversality condition, and
for this reason Program 3.3 is proposed. However, for engineering systems where p
has a physical meaning (e.g., load power in a power system, speed for an aircraft)
the transversality condition is often automatically verified. In fact, cases where this
condition is not satisfied are termed degenerate in the literature [18]. For this reason,
the problem was stated in Sec. 3.1 assuming that the nominal system has a bifurcation
at py whereas for p = py the system has a stable equilibrium. It is thus implicit in
the formulation of the problem that a change of p has an effect on the stability of
the system. In particular, it is expected that the critical eigenvalues of the perturbed
Jacobian will cross the imaginary axis as p is perturbed around py.

It is observed that, compared to Program 3.2, Program 3.3 only adds three unknowns
to the vector of optimization variables X, and has n, + 2 additional constraints.
Its effect in terms of computational cost is thus not expected to be important.

However, a strong reason to resort to Program 3.2 whenever possible is related to
the local optimality of the solutions of nonlinear programs. This issue will be further
discussed in Sec. 3.3, but it is remarked here that the addition of the constraints
(3.9d-3.9e) has a detrimental effect on it. Indeed it is always advisable in nonlinear
optimization to avoid redundant constraints in order to reduce the likelihood of local
optima [33]. Based on these considerations, and the discussion in Remark 3.2, the
proposed strategy is to employ Program 3.2 to find robust bifurcation margins and, if
continuation analyses of the perturbed system show that the transversality condition
is not fulfilled, use Program 3.3. It is noted that none of the analyses done in support
of this study required the adoption of Program 3.3 (which however was tested to verify
its soundness). For this reason, and also for the sake of clarity, in the remainder of the
work Program 3.2 will be considered as the basis for discussion and further algorithms.

Specifying the type of closest Hopf bifurcation

The robust bifurcation margin k,, has been associated so far with the occur-
rence of a generic Hopf bifurcation. Attention is now focused on the nature of the
bifurcation, i.e., subcritical or supercritical. The idea is to add a condition on the
sign of the Lyapunov coefficient [; to the constraints of Program 3.2. This can be
done by using the definition of I; (2.4), which requires the computation of left and
right eigenvectors associated with the critical eigenvalue, and the tensors of second
and third order derivative. By exploiting the fact that w is an optimization variable,
the eigenvectors can be computed without performing an eigenvalue analysis, but by
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direct computation as follows

(J —iwl,,)g=0, q=[Lql,
(3.10) (JT +iwl, )r=0, r=][1;r],
(r,q) =1,

where without loss of generality the first element of the eigenvectors has been fixed
to 1. As for the tensors, the derivatives in (2.6) can be computed analytically in
simple cases and by automatic or symbolic differentiation for more complex ones.
Alternatively, in [27] efficient strategies to avoid computing second and third order
derivatives of the vector field are discussed. In any case, they are available as a
function of the optimization variables x and J, and thus the only addition to the
vector of unknowns X is essentially [;.

In conclusion, given a positive tolerance ¢; on the value of the Lyapunov coefficient,
and an integer s; = +1 defining the sign of I; (s; = 1 for subcritical and s; = —1
for supercritical), the following program allows the closest subcritical or supercritical
Hopf bifurcation to be computed.

PROGRAM 3.4.

(3.11a) f(z,po,0) =0,

(3.11b) mink,, such that det(l =My, 8) = 0’.

(3.11c¢) X —km <6 <k, i=1,...,ns,
(3.11d) sily — e, >0,

X:[x;(;;w;llL nctrs:nx+2+n5+1.

To summarize the content of this Section, the problem of computing the closest
Hopf bifurcation point in the uncertain parameter space has been formulated via
a nonlinear optimization problem and has been presented incrementally in order to
stress the key steps involved. Because the Hopf bifurcation can be of two types, namely
subcritical and supercritical, two Programs are proposed. Program 3.2 determines
the closest Hopf bifurcation to a given stable equilibrium (this might be subcritical or
supercritical, depending on the specific case), whereas Program 3.4 allows the type of
closest Hopf bifurcation (via a constraint on the Lyapunov coefficient) to be specified.

3.3. Continuation-based multi-start strategy. The programs discussed in
Section 3.2 allow margins to Hopf bifurcation for a nominally stable equilibrium point
in the face of uncertainties to be computed. The main issue with this approach is
that, due to the fact that is based on nonlinear optimization, there is no guarantee
that the one found is the closest bifurcation, and thus in practice only upper bounds
on k,, are computed. In other words, global minima might be missed and thus there
could be a vector § featuring a smaller norm than & which causes a Hopf bifurcation.
Local optima are a well known issue in nonlinear optimization and, while there exist
global optimization algorithms that can guarantee global optima, their computational
burden grows exponentially with the dimension of the problem and thus often are not
practical solutions [33].

Mitigation strategies when local solvers (e.g. interior point methods) are used
depend on several aspects, including specific features of the program (e.g., objective
functions) and adopted optimization algorithms [17]. For this problem the objective
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is to compute worst-case perturbations quantified by means of a scalar metric, thus a
possible way to account for this issue is to estimate a guaranteed smallest magnitude
of the perturbation for which the system is stable. This is the approach taken in p
analysis, where the computation of iy p is known to be prone to local minima and as
a remedy upper bounds pyp have been proposed. Lower bounds on k,, (nonlinear
analogs of puyp) could then be a strategy in the present context, but this has not been
pursued here and could be a topic of future research.

As for the optimization algorithms, the focus of this work is not on developing
ad-hoc advanced optimization strategies, hence off-the-shelf algorithms available in
MATLAB for nonlinear constrained problems are employed [31]: These include: in-
terior point, which solves the constrained problem using a sequence of unconstrained
optimizations by using barrier or penalty functions to account for the constraints;
active set and sgp, belonging to the class of sequential quadratic programmes, which
directly solve the constrained problem via a series of approximating quadratic pro-
gramming based on the Karush-Kuhn-Tucker equations (necessary conditions for op-
timality of constrained optimization problems). Leveraging the availability of solvers
based on different optimization methods, a (naive but possible) strategy employed in
the work is to restart the programs using different solvers.

Another good practice to reduce the likelihood of local minima is to formulate the
problem in the simplest way possible [33], e.g., using smooth objective functions and
constraints and avoiding redundant constraints. These two principles have guided
the idea of introducing the objective function k,, to relax the non-smooth bound
on the uncertainty set involving &, which lead to the equivalent constraints (3.6).
Moreover, the aim of simplifying as much as possible the set of constraints prompted
the discussion in Remark 3.2, where it was proposed (based on a physically moti-
vated assumption) to resort to Program 3.3 only if the solution does not satisfy the
transversality condition.

A strategy which exploits a distinctive feature of this formulation is to run Pro-
gram 3.2 at a given frequency, i.e., w does not belong to X but is fixed a priori. The
rationale behind this is twofold. From a mathematical point of view, the optimization
is simplified by the fact that constraint (3.7b) does not depend on the frequency and
this enhances the accuracy of the result. From a bifurcation perspective, fixing the
frequency restricts the mechanisms by which the system can undergo a Hopf bifur-
cation when subject to uncertainties, which reduces the number of feasible solutions
in the first place, and as a result makes it also more likely to detect the optimal one.
A value of k,, can be associated with each discrete frequency, and the smallest of
these values can be regarded as the most critical. A natural drawback of this ap-
proach is that critical frequencies can be missed, but this can be overcome by running
Program 3.2 in a second step with w as optimization variable and initializing it with
values corresponding to the critical solution.

Despite these measures, the risk of falling into local minima is still present.
In particular, the programs’ initialization represents a critical aspect and thus a
continuation-based multi-start strategy is proposed. Assume that the optimizer has
found a solution X to Program 3.2. The goal is then to provide the optimizer with a
set of initializations, derived from X but possibly not leading the optimizer to find the
same solution, which allows an exhaustive optimization campaign to be performed.
The following extended continuation problem based on the constraints of Program 3.2
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is first considered

f(xal_)()v(s) 0
(3.12) F(x,,w, g, \p) = det(I — M; HA) - Ad =0.
5(Au) Ak

This can be recast in the formalism of (2.7) by setting

u=X =[z;0;w], u e R™, n, =n, +ns+ 1,
A= D@ Al dd € R?) A\ € RY,

(3.13) ® = f(z,po,0), ®:R™ — R,
U = [det(I — Mj,,A),6(A,)], ¥:R™ — R,

F - an+n5+3 N an+3

Let I = {1,2} and I = {3} be its complement, with Ay = {\;|i € I} and A\; = {\;|i €
I}, and u* = X, \* = U(u*). By construction, the restriction F(u*,\) x=xar =0
and F(u, \)|x=»; satisfies the IFT at (u*,\*). Therefore, F'(u,\)|y=); defines a
continuation problem for the d-manifold with d = n, +ns +1 — (ny +2) = nsg — 1.
Note that A; (coinciding with ;) are inactive continuation parameters (corresponding
to active constraints) because they are kept constant during continuation and they
ensure the singularity of the LET F(Mj,A). Since A} = 0, the corresponding active
constraints could have been equivalently embedded in the zero function ® but, for
consistency with the parallel between f and ® discussed in Sec. 2.1.2; this has been
used for the vector field only. On the other hand, A (i.e., A) corresponds to an
inactive monitor function bookkeeping the magnitude of the perturbation at each
step of the continuation.

The manifold associated with (3.12), denoted here by H, represents the set of Hopf
bifurcation points connected to the solution X in the uncertain parameter space. A
first important observation is that the dimension of A is nsg — 1. This is in agreement
with the well known fact [3] that a branch (i.e., 1-dimensional manifold) of Hopf
points can be obtained by continuing simultaneously two parameters starting from a
known initial point. Indeed, in the case of two uncertainties (ns = 2) # is the branch
of Hopf points connected to the initial solution X.

In principle, the computation of H could directly locate bifurcation points associ-
ated with perturbations featuring a smaller magnitude than ) by monitoring A\ (note
however that they could still be local optima since only the connected branches can
be tracked). In addition to that, exploring the surroundings of X (using a continu-
ation meaning of this terminology) can provide the sought initialization points for a
new optimization campaign. Unfortunately, H is generally multidimensional. In fact,
it is reasonable to assume that even for a relatively small number of uncertainties
computing H is not viable. To overcome this, a 1-dimensional restriction of H is
constructed by considering a parametrization of the uncertainty set § with a vector
function g(z,y) : R?> — R"™ where the 2 independent variables z and y have been
introduced. The definition of g is arbitrary and various strategies can be pursued.
The approach taken here assumes that two solutions X!, and X2 from Program 3.2
are available (their selection will be commented on later). Given the associated per-
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turbation vectors 4!, and 42 € R", a possible choice for g is then
(3.14) 9(z,y) 1 R? 5 R™ ¢ 51z +02(1 —y),
671152: + 67215(1 - y)’

Note that by construction g(1,1) = é* and ¢(0,0) = 62.
Based on this, the following continuation problem is formulated

f(xvﬁ()v(s) 0
| det( =My A) || x|
(3.15) F(z,0,w,2,y, Aa, Ak, Ag) = 7(Ay) e | 0
§—9(zy) Ag

With respect to the definitions in (3.13), z and y have been added to the vector of
continuation variables u (i.e., u = [X; z;y]), while the vector function § — g has been
added to the family of monitor functions ¥ (with associated continuation parameters
Ag € R™).

Let T = {1,2,4,....,4 +ns}, and I, A, \; as before. Two starting points are
available, respectively u* = [X1;1;1] and u* = [X2;0;0], with A\* = ¥(u*). Note that
in both cases A\; = ¥(u*) = 0 by construction. Therefore, § = g(z,y) at each step of
the continuation, and ¢ is expressed as a linear combination of 51 and §2.

Since F'(u*, A)|[x=rr = 0 and F(u, \)|y=»; satisfies the IFT at (u*,\*), then
a manifold H, with dimension d = ng +ns +3 — (ng + 2 + ns) = 1 is defined.
Crucially, the dimension is 1 irrespective of the number of uncertainties ngs, with the
drawback that these are now constrained to vary according to (3.14). /H; and ’H;
indicate the manifold built starting from [X' 1:1;1] and [X' 2:0;0] respectively, with
the subscript and the superscript highlighting the dependence on the parametrization
of the uncertainties g and the initial point.

The construction of H, requires two perturbation vectors 51 and 2. This is not
restrictive, since as a result of the local optimality typically more than one solution
is available. In addition, the possibility of running the optimization at a fixed fre-
quency w can be advantageously exploited with the goal of obtaining different modes
of perturbations. Indeed, as discussed before, Hopf bifurcations occurring at different
frequencies could represent different mechanisms underlying the loss of stability, thus
considering a linear combination of the perturbations as in (3.14) represent an efficient
strategy to select points on H,.

To sum up the multi-start strategy approach, the starting point is Program 3.2
which provides a solution consisting of an equilibrium point Z of f perturbed by § such
that the associated Jacobian J has a pair of purely imaginary eigenvalues. This is not
necessarily the closest bifurcation point to the nominal system due to the possibility
of local minima. However, X can be used to compute the restricted manifold H, via a
numerically cheap continuation problem once a parametrization g for the uncertainty
set is provided. Continuation of H, has two objectives. First, it could directly detect
improved solutions of Program 3.2 (if A; < l;:m) Second, points on H, can be used
to run Program 3.2 with different initializations.

If the manifold H, gathers a large number of points, and running the optimization
for each of them is not viable, criteria could be employed to select a subset of them

This manuscript is for review purposes only.



20 A. TANNELLI, M. LOWENBERG, AND A. MARCOS

only. Keeping in mind that the goal is to provide initializations which possibly make
the optimizer converge to different points from the initial solution X, the premise
of these criteria is to detect on H, perturbation vectors qualitatively different from

5. Possible indicators are for example the frequency w and the changes in sign of
the parameters in ¢ (recall that these are normalized, thus a change in sign reveals a
change in the direction of perturbation for the considered parameter).

3.4. Comparison with the direct method. The framework presented in the
previous sections allows the computation of the robust bifurcation margin k,, via
nonlinear optimization (section 3.2) aided by a multi-start strategy (3.3). Despite its
importance for the analysis of nonlinear systems, the computation of the closest Hopf
bifurcation point to a stable equilibrium in the uncertain parameter space has not
been adequately investigated so far. The only alternative approach available in the
literature is the so-called direct method [12], and the objective of this section is to
point out the differences (and the associated advantages) of the formulation proposed
in this paper (in the remainder of this section termed margin method) with respect
to it.

The direct method for Hopf bifurcations considers as starting point the vector
field (2.1) where n, > 1, i.e. the vector of bifurcation parameters is multidimensional.
Given a vector py associated with a stable equilibrium, the closest point to pg in the
set of parameters (or hypersurface) ¥ for which the equilibrium experiences a Hopf
bifurcation is sought. A first difference is thus that in the margin method a distinction
is drawn between bifurcation parameter p (of dimension equal to the codimension of
the bifurcation, which is 1 for the Hopf case) and uncertain parameters 4, and the
closest Hopf point is sought in the uncertainty space only (that is, pg is fixed). Con-
versely, in the direct method bifurcation and uncertain parameters are all gathered
in p and can all be perturbed in order to reach the closest bifurcation point. This
difference only pertains to the formulation of the problem, but it is worth highlighting
it since two different perturbation scenarios are effectively considered.

The key observation leveraged by the direct method is that if p, is the closest point
to po in 3, then the vector p, — pg is parallel to the normal vector to the hypersurface
Y at p.. Moreover, p, is a local minimum if the distance |p, — pp| is smaller than the
reciprocal of the curvature of ¥ at p..

Implementation of these conditions lead to the extended system of equations defining
a Hopf bifurcation ([12], Section 5). The name extended derives from the fact that, for
np = 1, this set of equations reduces to the standard system of equations to compute
Hopf bifurcation branches (Th. 2.1). The multidimensional case exploits the fact that
the normal vector at p. can be written out as a function of V), f| — and of the eigen-
vector of the Jacobian V. f |p:p* associated with the purely imaginary eigenvalues.
In turn, the curvature can be written as a function of the normal vector. Building
on these relationships and enforcing all the associated constraints, the problem is fi-
nally formulated as the solution of 6n, + n, + 2 nonlinear equations in 6n, + n, + 2
unknowns. Similarly to the margin method (see the vector X in Program 3.2), the
unknowns of the problem include the perturbed equilibrium (n,), the closest bifur-
cation parameter vector (n,), and the frequency (1). However, in addition to these
there are another 5n, + 1 unknowns which are introduced in order to express the rest
of the constraints, and clearly do not feature in the margin method. The key ideas
leveraged by the margin method to avoid these additional constraints are to enforce
the constraint on the Jacobian as singularity of the LFT (3.7b) and cast the minimum
distance problem as maximum singular value minimzation of the perturbation matrix
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A. As for the number of constraints, Program 3.2 has nct.s = ng + 2 + ng while the
direct method features 6n, 4+ n, + 2. A comparison in terms of size of the problem,
both in terms of unknowns and constraints, points out an objective advantage of the
margin method with respect to the direct method. Quoting the author in [12], “this
direct method for computing Hopf bifurcations may bee too cumbersome to be useful if
ng s large”.

The distinctions between the two methods are however not restricted to the size of the
problem. For example, the mathematical formulation of the problem is different. In
the margin method, k,, is the result of an optimization problem whereas in the direct
method a determined (the number of constraints equals the number of unknowns) set
of nonlinear equations has to be solved (e.g. with Newton-type methods). This is
deemed an advantage of the margin method, since the greater degree of freedom in
finding the solution can be exploited using optimization techniques in order to achieve
higher efficiency in the computation and more robustness to the problem of local min-
ima. As for the latter aspect, it is further observed that the margin method is also
equipped with the multi-start strategy (3.3), as opposed to the direct method where
there are no strategies to directly tackle the problem of converging to local minima.
Another favourable feature offered by the margin method is that it allows the type
of closest bifurcation to be specified via constraint on the Lyapunov coefficient (Pro-
gram 3.4). This is done in a relatively straightforward way by using the fact that w
is an optimization variable, and thus the eigenvectors needed for the computation of
Iy (2.4) are available without performing an eigenvalue analysis (3.10). As a result,
Program 3.4 only adds one unknown (I1) and one scalar constraint to Program 3.2
where the type of bifurcation is not specified. This is again due to the LFT formula-
tion of the problem that provides an analytic dependence of the constraints on w (see
also Remark 3.1). Conversely, the option of specifying the closest bifurcation is not
available in the direct method, nor is it clear how it could be added without incurring
a further substantial increase in the number of unknowns and constraints.

Another important aspect is related to the type of constraints involved in the two
problems. As discussed in Remark 3.1, the gradients of the constraints in Program 3.2
with respect to the unknowns (with the exception of w, which is more tedious) can all
be analytically computed and provided to the solver, with great advantage in terms
of efficiency of computation. This clearly does not apply to the direct method due
to the very complicated definition of the constraints (involving eigenvectors and their
projections) and of the unknowns.

Finally, a unique feature of the robust bifurcation margin k,, owes to its interpre-
tation as nonlinear extension of the structured singular value p. This indeed opens
up the possibility to transfer to the bifurcation field many of the well established
approaches in robust control [48]. This applies to: modelling, where advanced LFT
algorithms [28, 29] can be employed to efficiently formulate the constraints of Pro-
gram 3.2 and Program 3.4; analysis, where the insightful interpretations of p and
associated analysis strategies (sensitivity, frequency-domain analysis) [26] carry over
to kn; and ultimately robust control design, whereby a (potentially nonlinear) con-
troller is synthesised to prevent bifurcations in the face of a given uncertainty set.
While examples of the first two aspects have been given throughout the section and
will be exemplified further in section 4, the latter is an exciting prospective line of
research that can build on this initial work.

4. Numerical examples. The proposed concept of robust bifurcation margin
is demonstrated on two test cases from the literature. The first is a power system
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model for which the sensitivity of the Hopf bifurcation to modeling parameters was
considered in [13], while the second is an aeroelastic case study previously studied
with linear robust control techniques in [25].

4.1. Power system.

4.1.1. Model description. The first example considers the single machine
power load system with voltage regulator and dynamic load model studied in [13]
and depicted in Fig. 4. The model used in [13] is very similar to the one originally
proposed in [7], with the variations discussed next. The model in [7] consists of: five
ordinary differential equations representing the dynamics of the generator voltages
E:i + jE(;, the voltage regulator state Ry and output voltage Vg, and the field voltage
Erp; two algebraic equations which relate the load bus voltage phasor V1/0 to the
voltage source E;l + jEf5 and the load demand P +jQr, where Py, and Qf, are respec-
tively the constant (and fixed a priori) active and reactive power components. The
goal of the regulator is to control the voltage E at the high side of the transformer
given a reference voltage setpoint E,.r, which depends on the loading level.

High side
Load bus Load
Geyner.at::)r /" "\ transformer —/\V\N\_—] - )
Ey + jE; Jxr £ e V.6 PL+jQ
s
T
Erp Regulator ___
Ry Ip q-----Eref

Fic. 4. Power system sketch.

Differently from [7], the model in reference [13] considers: a dynamic power load
(i.e. Pr, and @ are not constant); a setpoint E,.; which is fixed for all loading levels;
and an expression of the voltage Fs as a function of the other state variables. Due
to these changes, two ordinary differential equations are added for V;, and 6, and the
two algebraic equations become explicit equations for Pr, and Q.

The resulting set of seven ordinary differential equations describing the power system,
with vector of states z = [E;l; E;; Vr; Erp; Ry;0; V1], is:

(4.1a) quEd =—E;+ (vqg — x4) 1y,
(41b) TCIZOE‘; = —E; — (xd — CE:i)Id + EFD;
: K;E
(4.1c) TaVi = Vi + Ka(Eyey — Eq — % + Ry),
f
(4.1d) TgEpp = —Epp + Vg,
: KE
(4.1e) TiR; = —Ry + =L 12
Ty
(4.1f) D@ = Py, — IPF,

(4.1g) kVy = Qp —1\/1— PF2.

where: T,9 and T}y are the open circuit time constants; x4 and z, are the synchronous
reactances; :I::i is the transient reactance; Iy and I, are the currents; T4 and K4 are
the voltage regulator time constant and gain; T is the exciter time constant; T and
K are the time constant and gain of the feedback loop; D and k are time constants
of the load dynamics; PF' is the power factor and [ parameterizes the increase of the
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constant power part of the load (this will be used as bifurcation parameter in the
analyses).

This set of equations must be closed with the defining equations for Iy, 14, Pr, Qr,
and Es. For the currents, the following holds [7]:

I, = (E Vi, cos(d — 0)),
TR
(4.2) I, = i(_E; + Vi sin(d — 6)),
TR

!’
TE=Tq+ Ty + Xe.

where § is the rotor angle, xp is the high side transformer reactance and z. is the
transmission line reactance.

The equations for the remaining three variables are not provided in [13]. The re-
lationships for P;, and @Q)p are derived here from the two aforementioned algebraic
equations in [7], which now allow an explicit expression for the load components to
be obtained since the phasor V1,/0 has a dedicated dynamic description (4.1f-4.1g).
As for E, a relationship to the state variables is derived by considering the loadflow
equation for the circuit with the voltage source at the high side of the transformer.
This leads to:

(4.3a) P = 43 cos(0)P — 141 sin(6)Q,
gy TrE
(4.3b) QL = 143 sin(8) P + V—cos( 0)Q,
TE TE
P = —E,cos(6) + E; sin(0) — V7, sin(6),
Q= E;l sin(0) + El cos(0) — V, cos(6),

&

(4.3c) s = ! \/ (zPL)* + (2.Q + V2)°.
Note that the same expression for Es was used in [46], where a very similar power
system was analyzed.

Table 1 reports the values of the parameters used here for the power system
model. These are all taken from [7], except for D and k (introduced anew in [13]) and
K, whose value was changed in [13]. As for the rotor angle J, it is noted that their
dynamic is assumed faster than the dominant voltage dynamics, thus the angle is in
quasi-steady state and does not have any effect on the results [7]. Time constants are
in seconds, reactance are p.u. while all the other parameters are dimensionless.

TABLE 1
Power system model parameters.

7 7

or | we | wq |wg | xy | Ty | Tog | Ka | Ta | Te | Kf | Ty | PF | D | k
015 (034 | 1 | 1 [018| 5 | 15] 30 |04 05601 13]095 |005]o0.1

Numerical continuation is applied to the nominal model using the parameter [ as
bifurcation parameter. The (non-zero) stable equilibrium point at I = 0 is found by
simulating the model and this is provided as an initialization to COCO. The branch
of equilibrium points as [ is increased is reported in Fig. 5 by showing the values of
three components of the state vector, namely E;l, Ry, and V.
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Fic. 5. Bifurcation diagram for the nominal power system model.

The analyses show that the system has a branch of stable equilibria for low values
of [ (this part of the branch is denoted by a solid line), which undergoes a Hopf
bifurcation at {;7=0.83 (circle marker), with a frequency of the associated imaginary
eigenvalues equal to wy=2.6 Tf%d, and a saddle node bifurcation at lgny=1.13 (square
marker). As aforementioned, the model used in here is not exactly the same as that
of [13] as insufficient information was provided in that reference to reproduce their
results exactly. In [13], the Hopf bifurcation also occurred at a lower loading level
than the saddle node one but at different values, i.e. {5F=0.37 and lsny=1.03. Thus,
qualitatively speaking, the results from Fig. 5 are similar to those in [13] (see also the
sensitivity analysis discussed next) and should enable the proposed robust bifurcation
margin approach to be tested by comparing with the results from [13]*.

4.1.2. Sensitivity analysis of the Hopf bifurcation. The authors in [13]
compute the sensitivity of both bifurcations to the model’s parameters (the focus will
be here only on the analyses for the Hopf one). This computation is performed by
first defining what is termed the loading margin to instability at ly (a value of the
bifurcation parameter ! corresponding to a stable equilibrium) as M (lp) = lg — lp.
The first-order sensitivity M. of M to a generic parameter ¢ (here ¢ represents any
model parameter, in the present case those in Table 1) is then computed as the partial
derivative of M with respect to c evaluated at Iy, i.e. M.(ly) = %—AC/[ |l=lo’ Its computa-
tion is performed using normal vectors to the manifold of Hopf bifurcation points and
essentially consists of a sensitivity of the critical eigenvalue. An approximation to this
sensitivity can be computed as M, = w, where M (lp,c+€) = lf,;re — 1y
and Z?E is the value of [ at which a Hopf bifurcation occurs when the parameter c is
increased to ¢ + €. The quantity M., is thus a finite difference approximation of M,
and can be computed via numerical continuation. The results of such a sensitivity
analysis are reported in Table 2 for the parameters previously listed in Table 1.

TABLE 2
Sensitivity of the Hopf bifurcation to model parameters (continuation-based).

7 Ze 24 zq z, T Ty Ka Ty Tr K;| 14 | PF D k
M, | -0.96 | -1.3476 | -0.05 | -0.006 | -0.9111 | 0.039 | 0.0047 | 0.003 | -0.2075 | -0.1982 | 2.1 | -0.14 | 1.5 | -0.005 | 0.11

LA MATLAB implementation of the power system model presented in this section, together with
a file to run continuation analyses with COCO, is available at
https://github.com/Andrealan/PowerSystem_cont
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It is noted that the sign of all the sensitivities (a negative sign means that an
increase of the parameter makes the loading margin to instability decrease) coincide
with those reported in [13] except for k, and the magnitude (proportional to the
sensitivity to that parameter) is also generally well captured.

In order to show the connection between the sensitivity approach used in [13] and
the concept of robust bifurcation margin, a first type of analysis is discussed next. A
set of four parameters from the power system model is considered, namely =4, K4,
T4, and Ky. Without loss of generality, only a subset of the parameters in Table
2 is selected to allow a more clear interpretation of the results. A subcritical value
of the loading level at which robustness of the plant is studied is then selected; this
is denoted Iy according to the notation adopted in section 3.1. In all the analyses
presented here the value [y = 0.725 < I will be considered. Once the set of uncertain
parameters and a value of the bifurcation parameter is selected, the corresponding
LFT can be constructed. It is observed that the dependence of the vector field on the
states cannot be captured directly in an LFT fashion. This is due to the trigonometric
functions (4.2-4.3a-4.3b) and square root (4.3c). For this reason, Taylor expansions
of these functions about the equilibrium state at Iy are considered. The order of the
expansion (1 and 2 depending on the specific state) is selected in order to guarantee
a satisfactory trade-off between accuracy and size of the LFT F(Mj, A). For all
the uncertain parameters a range of variation of £15% from the nominal value is
considered.

Program 3.2 is employed with an initialization provided by the nominal values of
the equilibrium point and of the uncertainties. The value of the Lyapunov coefficient
1 will not be considered as a variable in these analyses since the goal is not to study
the effect of the parameters on the type of Hopf bifurcation, even though this would
also be possible within this framework. Five different tests will be considered: four in
which only one parameter belongs to the uncertainty set A, (the total size of each of
the four LF'Ts is 17), and one in which all the four parameters are included in A,, (the
total size of the LFT is 25). The results are reported in Table 3 in terms of robust
stability margin k,,, frequency @ and worst-case perturbation for the normalized
uncertainties.

TABLE 3 B
Sensitivity analysis with the robust bifurcation margin at lop = 0.725.

test | km | @ 22 | 5y, | Ok, | Ov, | Ok,
1 24.3 2.3 24.3

2 e} n.a. . n.a. .

3 7.8 2.1 . . 7.8 .

4 2.5 2.6 . . . -2.5
5 1.54 2.2 1.54 | -1.54 | 1.54 | -1.54

The value of k,, for the first four tests, where only one parameter at a time
is allowed to vary, can be considered as a measure of the sensitivity of the Hopf
bifurcation to that parameter —and it is thus expected to show similar results to
those obtained in [13]. Indeed, all the predictions reported in Table 2 (which was in
agreement with [13]) are confirmed: high sensitivity to K¢, medium sensitivity to T4,
and practically no sensitivity to z, and K4 (note that for the latter the optimization
problem was found infeasible). Moreover, the signs of the worst-case perturbations
are also in agreement with the findings in Table 2. The fifth test shows that when
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all the parameters are acting together the margin k., decreases, but it is still greater
than 1, that is the power system at [ is robust to the uncertainty considered. For the
predicted worst-case perturbation, the Hopf bifurcation taking place at [ is associated
with a frequency @w = 2.2% (recall that this is one of the optimization variables of
Program 3.2), which is smaller than the one in the nominal case, but within the same
frequency range.

While the proposed robust bifurcation margin framework can be used to retrieve
the results of the sensitivity tests performed in [13], one of its advantage is that allows
also for another type of sensitivity analysis. In particular, the effect of a parameter
on the bifurcation is evaluated while simultaneously accounting for the other uncer-
tainties affecting the system. This is inherently different from the sensitivity measure
proposed in [13], which is a first-order approximation of the partial derivative of the
margin, and thus effectively neglects any coupling among the uncertainties. This key
aspect will be exemplified with a second type of k,,-based analysis.

It is known that the structured singular value p can be used to evaluate the
sensitivity of an instability to a set of ngs selected parameters by performing multiple
1 tests. This can be achieved for example using the skew-p concept [30], or, within
standard g analysis tools, by considering two different uncertainty levels w; 4, and
wa,q; (recall the definition of the uncertainty level in Eq. 3.3) for each parameter d;
(i = 1,...n5). In the first p test (termed base to indicate it is the baseline test), all
the parameters have the uncertainty level w; 4,, while in the following ns tests, the
uncertainty level of the i-th parameter is set to wy g, and for all the others it is kept
at wy,q; (with j # i). The difference between the peak of the baseline y plot and
the peaks of the other ng tests is proportional to the sensitivity of the instability to
the considered parameter. See [26] for an application of this analysis approach to the
robust flutter problem.

In the same spirit, the parameters studied in Table 3 are analyzed here considering
wy = 0.15 (i.e the previously defined 15% uncertainty range) and we = 0.3 (i.e.
doubling the range for the specific parameter used in the ns test). Program 3.2 is
again employed and the results are shown in Table 4 (the first column identifies the
test performed, i.e. base and then the parameter whose uncertainty level is set to ws).

TABLE 4 ~
Robust bifurcation margin sensitivity analysis at lop = 0.725.

test | km | @ T2 | &y, | Sk, | 01, | Ok,
base | 1.54 2.2 1.54 | -1.54 | 1.54 | -1.54
Tq 1.41 2.2 1.41 | -1.41 | 1.41 | -1.54
Ka 1.31 2 1.31 | -1.31 | 1.31 | -1.31
Ta 1.24 2.2 1.24 | -1.24 | 1.24 | -1.24
Ky [ 097 | 24 | 097 |-097 | 097 | -0.97

The baseline test coincides with test 5 in Table 3 but is reported to facilitate
the comparison. The different sensitivity of the considered parameters is confirmed
in this new analysis (from the least sensitive parameter z, to the most sensitive one
Ky). However, it is also clear that every parameter now has an effect on the shift of
the bifurcation point towards ly. This is clearly seen comparing Table 3 and 4, where
for the former table only K; showed a high sensitivity effect (close to the value of
the baseline test), but as shown in Table 4, when the uncertainty coupling is taken
into account for the analysis, then all of the four parameters have similar levels to the
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baseline case. This finding results from taking into account perturbations in the other
parameters while computing the parameter’s sensitivity, and shows that the coupling
among the uncertainties (not captured with first-order sensitivity approaches) can
drastically affect the importance of some parameters. Specifically, parameters deemed
unimportant with a first-order analysis can instead have a non-negligible impact on
the bifurcation point.

To further characterize this aspect, Figure 6 depicts the reciprocal of the robust
bifurcation margin k,, as a function of the frequency. The five curves represent the
five cases considered in Table 4 and, unlike the one-shot tests discussed therein, are
obtained by fixing the frequency in the optimization and computing the value of the
margin at each frequency.

11

1k - -x

09l T
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0.1 1 1 1 1 1 1
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F1c. 6. Sensitivity analysis of four parameters based on the robust bifurcation margin.

The curves in Figure 6 resemble those typically employed in linear robust analysis
with p [48, 2, 26]. This points out once again the connection between the proposed
concept of robust bifurcation margin k,, and the structured singular value p. In
particular, when i > 1, a perturbation in the allowed range of uncertainties exists
such that a Hopf bifurcation is experienced by the system when perturbed. Note that
the peak of each curve coincides with the reciprocal of the margin reported in Table
4. This representation allows the different sensitivities to the parameters discussed
previously to be immediately inferred.

4.2. Aeroelastic system.

4.2.1. Model description. The typical section is an aeroelastic case study com-
monly used for flutter analysis purposes [4], and consists of a rigid airfoil with lumped
springs simulating the 3 structural degrees of freedom (DOFs): plunge h, pitch a and
trailing edge flap 8. By defining the vector of structural states zs = [%;a; B] and
aerodynamic states z, (used to capture the unsteady aerodynamic contribution), the
system can be described in matrix form as:

T 0 I 0 Ty
(4.4) t=|i| =|-M'K —-M"'B M™'D| |i,| = Az,
Tq 0 E R Tq
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where M, B and K are respectively the aeroelastic inertial, damping and stiffness
matrices:

1
M =M, — §poob2A2a

1

1
K=K,— 5pOOVQAO.

They include the structural mass M and stiffness matrices K plus the aerodynamic
quasi-steady matrices A; (poo is the air density and b the half chord distance). D, E,
and R in (4.4) come from the rational approximation of the unsteady aerodynamic
operator. The parameters defining the model are provided in [25] and the total state
size ng is 9 (6 structural and 3 aerodynamic). The interested reader is referred to [25]
for a complete definition of the parameters defining the model and further details on
aeroelastic modeling with uncertainties.

Nonlinearities in K are considered in this work. Specifically, hardening cubic
terms for the plunge and pitch degrees of freedom are assumed, and the matrix K is
rewritten accordingly:

Kt 0 0 KNLKL(@)2 0 0
L NL h L h hib
(46) K=Ky+Ky "= 0 KL 0 [+ 0 KNYKEQ? 0 |,
0 0 Kg 0 0 0

where K3, K, and Kz are respectively the plunge, pitch and control surface stiffness.
As is common practice [11], the coefficients of the nonlinear terms are assumed pro-
portional to the corresponding linear ones through the dimensionless coefficients K ,JIV L
and KN* (assumed here equal to 100). The hardening effect modelled in (4.6) takes
into account the fact that the stiffness properties change when the system undergoes
large deformations, with an increase in the stiffness generally observed.

The dynamics of the system is thus in the form of the generic vector field (2.1),
and, by selecting the speed V' as bifurcation parameter, it holds:

&= f(z,V) = A" (V)a + (o),

(4.7) J(@,V) = AL(V) + V. NV (2),

where: AL : R — R" X" is obtained from A (4.4) by setting the nonlinear terms
to zero; fVL : R™ — R™ is the nonlinear part of the vector field; and the state is
T = [xs;34;74). Note that, for the nonlinearities considered here (4.6), fN* (and thus
also V., fV%) does not depend on the speed.

Following the notation in section 3.1, Vx will denote the speed at which the
nominal system undergoes a Hopf bifurcation, and after which it will potentially
exhibit limit cycle oscillations. Given a subcritical speed o (such that Vo < Vi
corresponds to a stable equilibrium) and the definition of a vector ¢ of parametric
uncertainties, then the distance in the parameter space of the equilibrium at V; from
the closest Hopf bifurcation is computed by means of the robust bifurcation margin
k. The robust bifurcation analysis will thus allow the quantification of the influence
of parametric uncertainties on the onset of LCO, which are a notorious problem for
nonlinear acroelastic systems [11].

Numerical continuation can be applied to (4.7) after having specified the value
of the trim state ;. Two cases will be considered, case 1 (¢l) with z; = 0 and case
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2 (¢2) featuring a non-zero value oy = 1° for the angle of attack of the section. The
latter is physically motivated by the fact that the section is generating positive lift to
counterbalance gravitational forces directed downwards. Figure 7 shows the standard
(i.e. nominal) bifurcation diagrams with V on the z-axis and the normalized plunge
DOF % on the y-axis (in the case of branches of LCO solution branches, this is the
maximum value over a period). The usual convention of representing stable steady-
states (equilibria and LCOs) with solid lines and unstable ones with dashed lines is
adopted, and the Hopf bifurcation is marked with a circle.

0.03
cl

0.02 —c2

0.01

0

Qo
2 _0.01

-0.02
— /
-0.03 T ¢

-0.04

_0'0540 250 260 270 280 290 300 310
V [m/s]

F1G. 7. Bifurcation diagram for the nominal vector field for two different trim states.

The system experiences supercritical Hopf bifurcations at
Vg= 302.7 7= for ¢l and Vy= 289.0 7 for ¢2. The frequency of the associated
imaginary eigenvalues are respectively wgy="70 % and wy =75 %.

4.2.2. Computation of robust bifurcation margins. Including uncertainties
in the nominal vector field of (4.7) yields the expression for the uncertain vector field

(4.82) &= f(,V,8) = AX(V,8)x + fN(x,V,9),
(4.8Db) J(z,V,8) = AL(V,8) + Vo fNE (2, V,6).

The bifurcation parameter V will be fixed in the subsequent analyses to Vy = 27072,
which, recall Figure 7, is associated in both cases with stable equilibria —and hence,
it is a valid choice according to the discussion in section 3.1.

The initial step to compute robust bifurcation margins is the definition of the
nominal system and of the uncertainty set, which in turn will drive the construction of
the underlying LFT. The former is described by (4.7), while the uncertainty definition
is chosen to define a range of variation of +£10% from the nominal value for the
coefficients Ms,,, Ms,,, Ks,, and of £5% for Mj,, and K

S12 S11

(4.9) Au = diag(5Ké;22,5K£11,5M (SM 5M522)'

s11” s12”

This uncertainty definition was considered since it is the same as that used in [25],
where the linear problem (i.e. K ,JLV L = KNE=0) was extensively analyzed by means

This manuscript is for review purposes only.



1150
1151
1152
1153
1154
1155
1156
1157

1158

1159
1160
1161
1162
1163
1164
1165

1166

1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189

30 A. TANNELLI, M. LOWENBERG, AND A. MARCOS

of nominal (eigenvalue analysis) and robust (u analysis) techniques. This testcase is
thus used to benchmark the first set of numerical results obtained with the method
proposed in this paper.

Program 3.2 is computed with an initialization provided by the nominal values of
the equilibrium point and of the uncertainties. The results from the program are re-
ported in Table 5 in terms of robust stability margin k,,, frequency @ of the imaginary
eigenvalues at Vp, and type of Hopf bifurcation. Recall indeed that Program 3.2 cal-
culates the closest Hopf bifurcation without constraining the value of 1, and the type
of predicted Hopf bifurcation was assessed a posteriori with numerical continuation
of the perturbed system.

~ TABLE 5
Robust bifurcation margins at Vo = 270% for uncertainties in the set (4.9).

rad

km | & = type
cl | 0.73 71.5 super
c2 | 0.49 75.1 super

It is inferred from the first column of Table 5 that in both cases the Hopf bifur-
cation could be shifted to V' = 270" within the uncertainty range (note indeed that
km < 1). Another important observation is that ¢l gives a margin k,, within less
than 1% of the result from the literature [25] (obtained with u considering the linear
system at the same speed V = 270). The (normalized) uncertainty vector found
here by the optimizer is

d 2[51{522 ) (SKSL11 ;0M

s11?

=[—0.7328;0.7328; —0.7328; 0.5027; 0.7328],

Sar, 3 0u,) ),
(4.10) M‘512 M 22]

which also features the same perturbations (within a small tolerance) as those de-
tected in [25] (their physical meaning in relation to the onset of flutter was discussed
in the reference). In order to better appreciate the importance of this result, let
us recall that nominal analyses (Figure 7) found for ¢l the branch of equilibria at
x = 0 regardless of V. Since the uncertainties selected here only affect AL then
NE0,V, ) = fNE0,V) = 0 and thus V,fVL = 0. That is, the determination of
km, is equivalent (for this specific case) to the problem solved by u, i.e., finding the
smallest perturbation matrix such that AL is neutrally stable. The good matching
with the literature results is very important, since in [25] prp and pyp were shown
to be close, indicating that the true value of 1 was determined. This result hence ver-
ifies the correctness of the approach proposed here since it recovers the result which,
for this specific case, is known a priori to be the correct one. Moreover, at least for
this case, Program 3.2 is able to detect the global minimum of the optimization.
Another positive feature is that Program 3.2 has the frequency w as a decision vari-
able, whereas 1 was applied in [25] at discrete frequencies because this is the available
implementation for the standard algorithms [2] (which has the drawback of possibly
missing critical frequencies and thus overestimating the value of the stability margin).
Case ¢2 is then considered (with a; = 1°). This cannot be analyzed with
because J is now also a function of the nonlinear terms due to non zero values for
the equilibria (which in turn depend on the uncertainty). For this reason, it is not
possible to compare the results with the true analytic solution. However, it is noted
that k,, now achieves a smaller value than for ¢l1. This is in accordance with the
nominal analyses in Figure 7, for which ¢2 presented a smaller Vg than cl. Thus,
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as V = 2707 is closer to the nominal bifurcation speed for c2, a smaller robustness
margin is expected. Note also that the two predicted frequencies w are relatively close
to the nominal ones. These interpretations thus give some confidence that an accurate
prediction of the margin has also been obtained for ¢2.

Other important information gathered in Table 5 is the type of closest Hopf bi-
furcations. Note that in order to obtain this result, the solver COCO was used to
perform numerical continuation of the perturbed system, which also allowed verifi-
cation that the latter experienced a Hopf bifurcation at Vj = 2707, as expected.
These analyses show that the closest Hopf bifurcations are of the same nature as the
corresponding ones in nominal conditions. Based on the greater attention typically
devoted to subcritical LCOs due to the associated risks [11], the following analyses
will make use of Program 3.4 to investigate whether changes in parameter values can
drive the Hopf bifurcation from supercritical to subcritical. Without loss of generality,
only the case ¢2 will be considered.

Uncertainties in two aerodynamic parameters are added to the set (4.9), namely,
the terms Ag,, and Ag,, of the steady aerodynamics matrix Ay (4.5). These corre-
spond to the lift and moment coefficients of the airfoil respectively, and are allowed
to vary within +£20% from their nominal values. Table 6 shows the solutions provided
by Program 3.4 for the two types of possible Hopf bifurcation in terms of: Lyapunov
coefficient [, stability margin k,,, frequency @, and normalized perturbations. A
tolerance ¢, = 1 on the value of the Lyapunov coefficient was used.

TABLE 6
Worst-case perturbations and margins to supercritical and subcritical Hopf bifurcations.

- rad

h kem « % 5K£22 5K5Ln 6MS11 6MS12 5M522 6‘4022 5’4012

super | -10% | 0.25 76 -0.25 0.25 -0.25 -0.25 0.25 0.25 -0.25
sub 1 3.13 67 -3.12 3.12 -3.12 -3.12 3.12 3.12 1.83

The supercritical case is consistent with the corresponding case in Table 5. Indeed,
the margin approximatively halves as a result of the additional uncertainty in the
system, while the frequency has a similar value. Note also that the constraint on [y
is not active and thus [; has a large absolute value. On the contrary, the subcritical
case features a far higher margin (which, according to the definition of k,, given in
subsection 3.1, points out that there is no perturbation inside the allowed set capable
of prompting the investigated bifurcation) and achieves a value of [; equal to the
tolerance ¢;. Another interesting fact is that while all the normalized perturbations
feature the same sign as in the supercritical case, this does not hold for Ag,, which
has an opposite perturbation and, in absolute value, smaller than the others. This
is an interesting aspect, because according to standard interpretations of unstable
aeroelastic phenomena [4, 25], a negative perturbation for Aj,, would be expected
(as noted for the supercritical case). The justification for this could be sought in
the physical mechanisms prompting subcritical LCO [11] and will be investigated in
future studies. It is remarked here that the commented scenario is distinctive of
this problem, where different (possibly conflicting) constraints define the worst-case
conditions. While robustness in the linear context focuses on the loss of stability
only, from a dynamical systems perspective this becomes a multi-faceted concept
characterized by concurrent conditions and thus non-intuitive results can be found.

Figure 8 shows bifurcation diagrams relative to worst-case combinations of pa-
rameters found by Program 3.4 by changing the tolerance on the Lyapunov coefficient
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€;. In the legend of Figure 8, the value of the Lyapunov coefficient at the bifurcation
point is indicated.
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Fic. 8. Bifurcation diagram of the system for different worst-case perturbations.

The first important observation is that all the cases display a Hopf bifurcation
at Vo = 270, The branches relative to the solutions from Table 6 (obtained with
g =1)arel; = —10% and !; = 1. This in turn demonstrates that Program 3.4 is able
to correctly predict worst-case combinations of uncertainty which lead to respectively
supercritical and subcritical bifurcation. For the other curves I; = ¢ holds since this
constraint is always active, and the associated margins k., slightly increase compared
to the value 3.13 featured in Table 6. It is stressed that a quantitative interpreta-
tion of the absolute value of I; depends on the arbitrary normalization adopted for
the eigenvector ¢ in its definition (3.10). The point made here is qualitative and,
specifically, is that as the tolerance ¢; (and thus [;) is increased, the subcritical Hopf
bifurcation predicted by the optimizer is more pronounced (i.e. the range of speeds
for which unstable and stable LCOs coexist with the branch of stable equilibria is
larger). Even though this is not guaranteed by the Hopf bifurcation theorem, since Iy
is defined on the center manifold at the bifurcation point only, the magnitude of the
Lyapunov coefficient can be taken as a measure of the subcriticality of the LCO (when
comparing different instances computed with the same normalization of ¢). Figure
8 shows therefore that embedding the constraint on the Lyapunov coefficient in the
bifurcation margin computation is successfully done by the optimization.

The last part of the section is aimed at providing insights into the numerical as-
pects of the algorithms. As a preamble, it is observed that there are not definitive
answers with respect to robustness to local minima or efficiency of the algorithms
as these will depend on many aspects such as, for example, the type of vector field
(not only size and degree, but also number of attractors) and the optimization al-
gorithm employed (which is an aspect that has not been investigated in this work).
Investigation of these important features are left for future work.

The execution time of Program 3.4 is larger than that of Program 3.2 (approxima-
tively 6s against 3s for the case with 7 uncertainties). Most importantly, the addition
of the constraint on [; exacerbates the issue of local minima, especially when this is an
active constraint. The set of strategies described in Section 3.3 were thus employed to
obtain the results presented in Figure 8. Specifically, reinitializing the optimization
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with points on the auxiliary manifold H, and with solutions obtained by fixing the
frequency in Program 3.4 led to significant improvements in the solution.

Finally, it is remarked that for all the analyzed cases, the worst-case combina-
tions of the uncertain parameters predicted by the optimization problem were used to
perform numerical continuation analyses of the perturbed system with COCO. In all
cases the perturbed systems encountered a Hopf bifurcation at the pre-selected speed
Vo. Even though this fact does not ensure that the global optimum (i.e. smallest
margin to bifurcation) was found, it represents important evidence of the validity of
the overall approach.

5. Conclusions. The paper develops a framework for the analysis of nonlinear
systems subject to parametric uncertainties with the goal of studying robustness of
stable equilibria to the onset of dynamic bifurcations. A scalar metric quantifying a
perturbation in the uncertainty set is first defined, and the magnitude of the smallest
perturbation such that a stable equilibrium is driven into a Hopf bifurcation point is
named the robust bifurcation margin k,,. Its definition, which also allows the nature
of the closest Hopf bifurcation (subcritical or supercritical) to be specified, is based
on the idea of building a Linear Fractional Transformation model of the uncertain
Jacobian and studying its singularity. The proposed margin can be interpreted as an
extension of the structured singular value g to the nonlinear context. The compu-
tation of k,, is recast as a nonlinear smooth constrained optimization problem, and
as such it suffers in principle from the issue of local minima. Thus, the proposed
programs technically provide only an upper bound on the margin. However, several
mitigation strategies are described in order to tighten the gap with the actual margin,
including a continuation-based multi-start strategy. Application of the framework is
demonstrated on two case studies: a power system model and an aeroelastic system
exhibiting nonlinear flutter behaviour. For the former, analyses show that k,, can be
used to infer sensitivity of the Hopf bifurcation to system’s parameters and it allows
more accurate predictions than those achieved with available methods only providing
first-order information. As for the latter, first the same results obtained in the lit-
erature with p are retrieved, and then the possibility to distinguish between closest
subcritical and supercritical bifurcations is explored. The results verify from different
perspectives soundness of the newly introduced concept and provide examples of its
perspective advantages over available techniques to study the nonlinear robustness
problem in different application domains.
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